Network-based estimation of therapeutic efficacy and adverse reaction potential for prioritisation of anti-cancer drug combinations

IF 4.4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Arindam Ghosh, Vittorio Fortino
{"title":"Network-based estimation of therapeutic efficacy and adverse reaction potential for prioritisation of anti-cancer drug combinations","authors":"Arindam Ghosh,&nbsp;Vittorio Fortino","doi":"10.1016/j.csbj.2024.12.003","DOIUrl":null,"url":null,"abstract":"<div><div>Drug combinations, although a key therapeutic agent against cancer, are yet to reach their full applicability potential due to the challenges involved in the identification of effective and safe drug pairs. <em>In vitro</em> or in vivo screening would have been the optimal approach if combinatorial explosion was not an issue. <em>In silico</em> methods, on the other hand, can enable rapid screening of drug pairs to prioritise for experimental validation. Here we present a novel network medicine approach that systematically models the proximity of drug targets to disease-associated genes and adverse effect-associated genes, through the combination of network propagation algorithm and gene set enrichment analysis. The proposed approach is applied in the context of identifying effective drug combinations for cancer treatment starting from a training set of drug combinations curated from DrugComb and DrugBank databases. We observed that effective drug combinations usually enrich disease-related gene sets while adverse drug combinations enrich adverse-effect gene sets. We use this observation to systematically train classifiers distinguishing drug combinations with higher therapeutic effects and no known adverse reaction from combinations with lower therapeutic effects and potential adverse reactions in six cancer types. The approach is tested and validated using drug combinations curated from in vitro screening data and clinical reports. Trained classification models are also used to identify novel potential anti-cancer drug combinations for experimental validation. We believe our framework would be a key addition to the anti-cancer drug combination identification pipeline by enabling rapid yet robust estimation of therapeutic efficacy or adverse reaction potential.</div></div>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"27 ","pages":"Pages 65-77"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2001037024004252","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Drug combinations, although a key therapeutic agent against cancer, are yet to reach their full applicability potential due to the challenges involved in the identification of effective and safe drug pairs. In vitro or in vivo screening would have been the optimal approach if combinatorial explosion was not an issue. In silico methods, on the other hand, can enable rapid screening of drug pairs to prioritise for experimental validation. Here we present a novel network medicine approach that systematically models the proximity of drug targets to disease-associated genes and adverse effect-associated genes, through the combination of network propagation algorithm and gene set enrichment analysis. The proposed approach is applied in the context of identifying effective drug combinations for cancer treatment starting from a training set of drug combinations curated from DrugComb and DrugBank databases. We observed that effective drug combinations usually enrich disease-related gene sets while adverse drug combinations enrich adverse-effect gene sets. We use this observation to systematically train classifiers distinguishing drug combinations with higher therapeutic effects and no known adverse reaction from combinations with lower therapeutic effects and potential adverse reactions in six cancer types. The approach is tested and validated using drug combinations curated from in vitro screening data and clinical reports. Trained classification models are also used to identify novel potential anti-cancer drug combinations for experimental validation. We believe our framework would be a key addition to the anti-cancer drug combination identification pipeline by enabling rapid yet robust estimation of therapeutic efficacy or adverse reaction potential.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational and structural biotechnology journal
Computational and structural biotechnology journal Biochemistry, Genetics and Molecular Biology-Biophysics
CiteScore
9.30
自引率
3.30%
发文量
540
审稿时长
6 weeks
期刊介绍: Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to: Structure and function of proteins, nucleic acids and other macromolecules Structure and function of multi-component complexes Protein folding, processing and degradation Enzymology Computational and structural studies of plant systems Microbial Informatics Genomics Proteomics Metabolomics Algorithms and Hypothesis in Bioinformatics Mathematical and Theoretical Biology Computational Chemistry and Drug Discovery Microscopy and Molecular Imaging Nanotechnology Systems and Synthetic Biology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信