Jiaquan Zhuang , Qian Yu , Yidong Guo , Yun Peng , Yanan Li , Yunwei Wang
{"title":"Decoding intertidal oyster reef morphology: Insights from UAV photogrammetry and deep learning","authors":"Jiaquan Zhuang , Qian Yu , Yidong Guo , Yun Peng , Yanan Li , Yunwei Wang","doi":"10.1016/j.margeo.2024.107462","DOIUrl":null,"url":null,"abstract":"<div><div>Global coverage of oyster reefs has substantially declined due to environmental changes driven by climate change and human activities, severely impairing their ecological functions. Quantitative information on oyster reef morphology is crucial for developing restoration strategies and understanding the ecomorphodynamics of these reefs. This study focused on the Liyashan oyster reef conservation area in the intertidal zone of Haimen, Jiangsu, China. We utilized Unmanned Aerial Vehicle (UAV) photogrammetry to obtain RGB orthoimages and Digital Elevation Models (DEMs) with centimeter-level resolution and accuracy. By integrating UAV photogrammetry and Deep Learning techniques, we efficiently and accurately identified reef footprints and created pixel-level reef height maps. Based on the reef height data, we introduced the Volume Balance Index (VBI) to assess reef fragmentation (degree of pitting), where a lower VBI value indicates higher relative fragmentation. Quantitative results at the reef block scale demonstrate a significant negative correlation between reef size (area and height) and overall fragmentation, with a strong logarithmic relationship between reef height and VBI. Generally, less degraded reefs are primarily distributed in the eastern and southern parts of the region, a pattern potentially related to local hydrodynamic conditions. This study provides a cost-effective and efficient solution for monitoring intertidal oyster reefs and lays the foundation for further research on their ecomorphodynamics.</div></div>","PeriodicalId":18229,"journal":{"name":"Marine Geology","volume":"480 ","pages":"Article 107462"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025322724002469","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Global coverage of oyster reefs has substantially declined due to environmental changes driven by climate change and human activities, severely impairing their ecological functions. Quantitative information on oyster reef morphology is crucial for developing restoration strategies and understanding the ecomorphodynamics of these reefs. This study focused on the Liyashan oyster reef conservation area in the intertidal zone of Haimen, Jiangsu, China. We utilized Unmanned Aerial Vehicle (UAV) photogrammetry to obtain RGB orthoimages and Digital Elevation Models (DEMs) with centimeter-level resolution and accuracy. By integrating UAV photogrammetry and Deep Learning techniques, we efficiently and accurately identified reef footprints and created pixel-level reef height maps. Based on the reef height data, we introduced the Volume Balance Index (VBI) to assess reef fragmentation (degree of pitting), where a lower VBI value indicates higher relative fragmentation. Quantitative results at the reef block scale demonstrate a significant negative correlation between reef size (area and height) and overall fragmentation, with a strong logarithmic relationship between reef height and VBI. Generally, less degraded reefs are primarily distributed in the eastern and southern parts of the region, a pattern potentially related to local hydrodynamic conditions. This study provides a cost-effective and efficient solution for monitoring intertidal oyster reefs and lays the foundation for further research on their ecomorphodynamics.
期刊介绍:
Marine Geology is the premier international journal on marine geological processes in the broadest sense. We seek papers that are comprehensive, interdisciplinary and synthetic that will be lasting contributions to the field. Although most papers are based on regional studies, they must demonstrate new findings of international significance. We accept papers on subjects as diverse as seafloor hydrothermal systems, beach dynamics, early diagenesis, microbiological studies in sediments, palaeoclimate studies and geophysical studies of the seabed. We encourage papers that address emerging new fields, for example the influence of anthropogenic processes on coastal/marine geology and coastal/marine geoarchaeology. We insist that the papers are concerned with the marine realm and that they deal with geology: with rocks, sediments, and physical and chemical processes affecting them. Papers should address scientific hypotheses: highly descriptive data compilations or papers that deal only with marine management and risk assessment should be submitted to other journals. Papers on laboratory or modelling studies must demonstrate direct relevance to marine processes or deposits. The primary criteria for acceptance of papers is that the science is of high quality, novel, significant, and of broad international interest.