Knowledge-guided temperature correction method for soluble solids content detection of watermelon based on Vis/NIR spectroscopy

IF 8.2 Q1 AGRICULTURE, MULTIDISCIPLINARY
Zhizhong Sun , Jie Yang , Yang Yao , Dong Hu , Yibin Ying , Junxian Guo , Lijuan Xie
{"title":"Knowledge-guided temperature correction method for soluble solids content detection of watermelon based on Vis/NIR spectroscopy","authors":"Zhizhong Sun ,&nbsp;Jie Yang ,&nbsp;Yang Yao ,&nbsp;Dong Hu ,&nbsp;Yibin Ying ,&nbsp;Junxian Guo ,&nbsp;Lijuan Xie","doi":"10.1016/j.aiia.2025.01.004","DOIUrl":null,"url":null,"abstract":"<div><div>Visible/near-infrared (Vis/NIR) spectroscopy technology has been extensively utilized for the determination of soluble solids content (SSC) in fruits. Nonetheless, the spectral distortion resulting from temperature variations in the sample leads to a decrease in detection accuracy. To mitigate the influence of temperature fluctuations on the accuracy of SSC detection in fruits, using watermelon as an example, this study presents a knowledge-guided temperature correction method utilizing one-dimensional convolutional neural networks (1D-CNN). This method consists of two stages: the first stage involves utilizing 1D-CNN models and gradient-weighted class activation mapping (Grad-CAM) method to acquire gradient-weighted features correlating with temperature. The second stage involves mapping these features and integrating them with the original Vis/NIR spectrum, and then train and test the partial least squares (PLS) model. This knowledge-guided method can identify wavelength bands with high temperature correlation in the Vis/NIR spectra, offering valuable guidance for spectral data processing. The performance of the PLS model constructed using the 15 °C spectrum guided by this method is superior to that of the global model, and can reduce the root mean square error of the prediction set (RMSEP) to 0.324°Brix, which is 32.5 % lower than the RMSEP of the global model (0.480°Brix). The method proposed in this study has superior temperature correction effects than slope and bias correction, piecewise direct standardization, and external parameter orthogonalization correction methods. The results indicate that the knowledge-guided temperature correction method based on deep learning can significantly enhance the detection accuracy of SSC in watermelon, providing valuable reference for the development of PLS calibration methods.</div></div>","PeriodicalId":52814,"journal":{"name":"Artificial Intelligence in Agriculture","volume":"15 1","pages":"Pages 88-97"},"PeriodicalIF":8.2000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Agriculture","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589721725000042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Visible/near-infrared (Vis/NIR) spectroscopy technology has been extensively utilized for the determination of soluble solids content (SSC) in fruits. Nonetheless, the spectral distortion resulting from temperature variations in the sample leads to a decrease in detection accuracy. To mitigate the influence of temperature fluctuations on the accuracy of SSC detection in fruits, using watermelon as an example, this study presents a knowledge-guided temperature correction method utilizing one-dimensional convolutional neural networks (1D-CNN). This method consists of two stages: the first stage involves utilizing 1D-CNN models and gradient-weighted class activation mapping (Grad-CAM) method to acquire gradient-weighted features correlating with temperature. The second stage involves mapping these features and integrating them with the original Vis/NIR spectrum, and then train and test the partial least squares (PLS) model. This knowledge-guided method can identify wavelength bands with high temperature correlation in the Vis/NIR spectra, offering valuable guidance for spectral data processing. The performance of the PLS model constructed using the 15 °C spectrum guided by this method is superior to that of the global model, and can reduce the root mean square error of the prediction set (RMSEP) to 0.324°Brix, which is 32.5 % lower than the RMSEP of the global model (0.480°Brix). The method proposed in this study has superior temperature correction effects than slope and bias correction, piecewise direct standardization, and external parameter orthogonalization correction methods. The results indicate that the knowledge-guided temperature correction method based on deep learning can significantly enhance the detection accuracy of SSC in watermelon, providing valuable reference for the development of PLS calibration methods.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial Intelligence in Agriculture
Artificial Intelligence in Agriculture Engineering-Engineering (miscellaneous)
CiteScore
21.60
自引率
0.00%
发文量
18
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信