Optimising data set creation in the cybersecurity landscape with a special focus on digital forensics: Principles, characteristics, and use cases

IF 2 4区 医学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Thomas Göbel , Frank Breitinger , Harald Baier
{"title":"Optimising data set creation in the cybersecurity landscape with a special focus on digital forensics: Principles, characteristics, and use cases","authors":"Thomas Göbel ,&nbsp;Frank Breitinger ,&nbsp;Harald Baier","doi":"10.1016/j.fsidi.2025.301882","DOIUrl":null,"url":null,"abstract":"<div><div>Data sets (samples) are important for research, training, and tool development. While the FAIR principles, data repositories and archives like Zenodo and NIST's Computer Forensic Reference Data Sets (CFReDS) enhance the accessibility and reusability of data sets, standardised practices for crafting and describing these data sets require further attention. This paper analyses the existing literature to identify the key data set (generation) characteristics, issues, desirable attributes, and use cases. Although our findings are generally applicable, i.e., to the cybersecurity domain, our special focus is on the digital forensics domain. We define principles and properties for cybersecurity-relevant data sets and their implications for the data creation process to maximise their quality, utility and applicability, taking into account specific data set use cases and data origin. We aim to guide data set creators in enhancing their data sets' value for the cybersecurity and digital forensics field.</div></div>","PeriodicalId":48481,"journal":{"name":"Forensic Science International-Digital Investigation","volume":"52 ","pages":"Article 301882"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic Science International-Digital Investigation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666281725000216","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Data sets (samples) are important for research, training, and tool development. While the FAIR principles, data repositories and archives like Zenodo and NIST's Computer Forensic Reference Data Sets (CFReDS) enhance the accessibility and reusability of data sets, standardised practices for crafting and describing these data sets require further attention. This paper analyses the existing literature to identify the key data set (generation) characteristics, issues, desirable attributes, and use cases. Although our findings are generally applicable, i.e., to the cybersecurity domain, our special focus is on the digital forensics domain. We define principles and properties for cybersecurity-relevant data sets and their implications for the data creation process to maximise their quality, utility and applicability, taking into account specific data set use cases and data origin. We aim to guide data set creators in enhancing their data sets' value for the cybersecurity and digital forensics field.
优化网络安全领域的数据集创建,特别关注数字取证:原则、特征和用例
数据集(样本)对于研究、培训和工具开发非常重要。虽然FAIR原则、数据存储库和档案(如Zenodo和NIST的计算机法医参考数据集(CFReDS))增强了数据集的可访问性和可重用性,但制作和描述这些数据集的标准化实践需要进一步关注。本文分析了现有文献,以确定关键数据集(生成)的特征、问题、所需属性和用例。尽管我们的研究结果普遍适用于网络安全领域,但我们特别关注的是数字取证领域。我们定义网络安全相关数据集的原则和属性及其对数据创建过程的影响,以最大限度地提高其质量、效用和适用性,同时考虑到特定的数据集用例和数据来源。我们的目标是指导数据集创建者提高其数据集在网络安全和数字取证领域的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
15.00%
发文量
87
审稿时长
76 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信