Unstable periodic orbits and hyperchaos in 2D quadratic memristor map

Sishu Shankar Muni
{"title":"Unstable periodic orbits and hyperchaos in 2D quadratic memristor map","authors":"Sishu Shankar Muni","doi":"10.1016/j.fraope.2024.100193","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the characteristics of the simplest invariant sets within a symmetric two-dimensional quadratic memristor map, exhibiting pinched hysteresis. Our analysis reveals critically stable fixed points within the map. Through computation of critical curves, we demonstrate the map’s non-invertibility and categorize it as type <span><math><mrow><msub><mrow><mi>Z</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>−</mo><msub><mrow><mi>Z</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span>. We observe that successive iterates of the critical curve delineate both disjoint and merged hyperchaotic attractors. Utilizing the usual period-doubling route, we establish the manifestation of hyperchaos within the map. Furthermore, employing a multi-dimensional Newton–Raphson method, we extend saddle periodic orbits to the realm of hyperchaos. Notably, our investigation, supported by eigenvalue computations, elucidates that most of the periodic orbits absorbed into the hyperchaotic attractor transform into repellers while the remaining periodic orbits are saddles representing unstable dimension variability (UDV).</div></div>","PeriodicalId":100554,"journal":{"name":"Franklin Open","volume":"9 ","pages":"Article 100193"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Franklin Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773186324001233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the characteristics of the simplest invariant sets within a symmetric two-dimensional quadratic memristor map, exhibiting pinched hysteresis. Our analysis reveals critically stable fixed points within the map. Through computation of critical curves, we demonstrate the map’s non-invertibility and categorize it as type Z1Z3. We observe that successive iterates of the critical curve delineate both disjoint and merged hyperchaotic attractors. Utilizing the usual period-doubling route, we establish the manifestation of hyperchaos within the map. Furthermore, employing a multi-dimensional Newton–Raphson method, we extend saddle periodic orbits to the realm of hyperchaos. Notably, our investigation, supported by eigenvalue computations, elucidates that most of the periodic orbits absorbed into the hyperchaotic attractor transform into repellers while the remaining periodic orbits are saddles representing unstable dimension variability (UDV).
二维二次型忆阻器映射中的不稳定周期轨道和超混沌
本研究探讨了对称二维二次型忆阻器映射中最简单不变量集的特征,这些不变量集表现出缩紧迟滞。我们的分析揭示了地图中非常稳定的不动点。通过临界曲线的计算,证明了该映射的不可逆性,并将其归类为Z1−Z3型。我们观察到临界曲线的连续迭代描述了不相交和合并的超混沌吸引子。利用通常的倍周期路径,我们建立了地图内超混沌的表现。此外,我们利用一个多维牛顿-拉夫逊方法,将鞍形周期轨道扩展到超混沌领域。值得注意的是,我们的研究在特征值计算的支持下,阐明了吸收到超混沌吸引子的大多数周期轨道转化为排斥子,而剩余的周期轨道是代表不稳定维度可变性(UDV)的鞍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信