Prediction of the remaining useful life of a milling machine using machine learning

IF 1.6 Q2 MULTIDISCIPLINARY SCIENCES
MethodsX Pub Date : 2025-01-31 DOI:10.1016/j.mex.2025.103195
Abbas Al-Refaie , Majd Al-atrash , Natalija Lepkova
{"title":"Prediction of the remaining useful life of a milling machine using machine learning","authors":"Abbas Al-Refaie ,&nbsp;Majd Al-atrash ,&nbsp;Natalija Lepkova","doi":"10.1016/j.mex.2025.103195","DOIUrl":null,"url":null,"abstract":"<div><div>The cutting tool is a key component of the milling machine that decides productivity. Hence, an adequate predictive maintenance (PdM) strategy for the cutting tools becomes necessary. This research seeks to develop a smart maintenance web application that utilizes Machine Learning (ML) supervised models to predict the Remaining Useful Life (RUL) for milling operations. The ML models were developed using a four-stage process including data pre-processing, training, evaluation, and deployment. Several ML algorithms were applied and the results were evaluated using five measures involving Accuracy, Mean Absolute Error (MAE), Mean Squared Error (MSE), R-squared, and R-squared adjusted. It was found that the Multi-Layer Perceptron Regressor provided the largest accuracies, adjusted R-squared, MAE, and MSE of 99 %, 0.99, 3.7, and 23.13, respectively. A web application for maintenance was finally developed with several ML algorithms at the evaluation stage. Maintenance engineers can utilize the developed smart web application to monitor the machine's health state and predict failure occurrence. In conclusion, the developed web application assists engineers in developing reliable predictions of maintenance activities, which may save costly production and maintenance losses.<ul><li><span>•</span><span><div>A Web application based on machine learning techniques was developed for RUL predictions for the milling cutting tool.</div></span></li><li><span>•</span><span><div>A comparison between the prediction results from various machine learning techniques was conducted.</div></span></li><li><span>•</span><span><div>The web application is found to be valuable for maintenance prediction and planning.</div></span></li></ul></div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"14 ","pages":"Article 103195"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016125000433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The cutting tool is a key component of the milling machine that decides productivity. Hence, an adequate predictive maintenance (PdM) strategy for the cutting tools becomes necessary. This research seeks to develop a smart maintenance web application that utilizes Machine Learning (ML) supervised models to predict the Remaining Useful Life (RUL) for milling operations. The ML models were developed using a four-stage process including data pre-processing, training, evaluation, and deployment. Several ML algorithms were applied and the results were evaluated using five measures involving Accuracy, Mean Absolute Error (MAE), Mean Squared Error (MSE), R-squared, and R-squared adjusted. It was found that the Multi-Layer Perceptron Regressor provided the largest accuracies, adjusted R-squared, MAE, and MSE of 99 %, 0.99, 3.7, and 23.13, respectively. A web application for maintenance was finally developed with several ML algorithms at the evaluation stage. Maintenance engineers can utilize the developed smart web application to monitor the machine's health state and predict failure occurrence. In conclusion, the developed web application assists engineers in developing reliable predictions of maintenance activities, which may save costly production and maintenance losses.
  • A Web application based on machine learning techniques was developed for RUL predictions for the milling cutting tool.
  • A comparison between the prediction results from various machine learning techniques was conducted.
  • The web application is found to be valuable for maintenance prediction and planning.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信