Adaptive meta-learning stochastic gradient Hamiltonian Monte Carlo simulation for Bayesian updating of structural dynamic models

IF 6.9 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Xianghao Meng , James L. Beck , Yong Huang , Hui Li
{"title":"Adaptive meta-learning stochastic gradient Hamiltonian Monte Carlo simulation for Bayesian updating of structural dynamic models","authors":"Xianghao Meng ,&nbsp;James L. Beck ,&nbsp;Yong Huang ,&nbsp;Hui Li","doi":"10.1016/j.cma.2025.117753","DOIUrl":null,"url":null,"abstract":"<div><div>In the last few decades, Markov chain Monte Carlo (MCMC) methods have been widely applied to Bayesian updating of structural dynamic models in the field of structural health monitoring. Recently, several MCMC algorithms have been developed that incorporate neural networks to enhance their performance for specific Bayesian model updating problems. However, a common challenge with these approaches lies in the fact that the embedded neural networks often necessitate retraining when faced with new tasks, a process that is time-consuming and significantly undermines the competitiveness of these methods. This paper introduces a newly developed adaptive meta-learning stochastic gradient Hamiltonian Monte Carlo (AM-SGHMC) algorithm. The idea behind AM-SGHMC is to optimize the sampling strategy by training adaptive neural networks, and due to the adaptive design of the network inputs and outputs, the trained sampler can be directly applied to various Bayesian updating problems of the same type of structure without further training, thereby achieving meta-learning. Additionally, practical issues for the feasibility of the AM-SGHMC algorithm for structural dynamic model updating are addressed, and two examples involving Bayesian updating of multi-story building models with different model fidelity are used to demonstrate the effectiveness and generalization ability of the proposed method.</div></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"437 ","pages":"Article 117753"},"PeriodicalIF":6.9000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045782525000258","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the last few decades, Markov chain Monte Carlo (MCMC) methods have been widely applied to Bayesian updating of structural dynamic models in the field of structural health monitoring. Recently, several MCMC algorithms have been developed that incorporate neural networks to enhance their performance for specific Bayesian model updating problems. However, a common challenge with these approaches lies in the fact that the embedded neural networks often necessitate retraining when faced with new tasks, a process that is time-consuming and significantly undermines the competitiveness of these methods. This paper introduces a newly developed adaptive meta-learning stochastic gradient Hamiltonian Monte Carlo (AM-SGHMC) algorithm. The idea behind AM-SGHMC is to optimize the sampling strategy by training adaptive neural networks, and due to the adaptive design of the network inputs and outputs, the trained sampler can be directly applied to various Bayesian updating problems of the same type of structure without further training, thereby achieving meta-learning. Additionally, practical issues for the feasibility of the AM-SGHMC algorithm for structural dynamic model updating are addressed, and two examples involving Bayesian updating of multi-story building models with different model fidelity are used to demonstrate the effectiveness and generalization ability of the proposed method.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信