Optimizing colorectal polyp detection and localization: Impact of RGB color adjustment on CNN performance

IF 1.6 Q2 MULTIDISCIPLINARY SCIENCES
MethodsX Pub Date : 2025-01-27 DOI:10.1016/j.mex.2025.103187
Jirakorn Jamrasnarodom , Pharuj Rajborirug , Pises Pisespongsa , Kitsuchart Pasupa
{"title":"Optimizing colorectal polyp detection and localization: Impact of RGB color adjustment on CNN performance","authors":"Jirakorn Jamrasnarodom ,&nbsp;Pharuj Rajborirug ,&nbsp;Pises Pisespongsa ,&nbsp;Kitsuchart Pasupa","doi":"10.1016/j.mex.2025.103187","DOIUrl":null,"url":null,"abstract":"<div><div>Colorectal cancer, arising from adenomatous polyps, is a leading cause of cancer-related mortality, making early detection and removal crucial for preventing cancer progression. Machine learning is increasingly used to enhance polyp detection during colonoscopy, the gold standard for colorectal cancer screening, despite its operator-dependent miss rates. This study explores the impact of RGB color adjustment on Convolutional Neural Network (CNN) models for improving polyp detection and localization in colonoscopic images. Using datasets from Harvard Dataverse for training and internal validation, and LDPolypVideo-Benchmark for external validation, RGB color adjustments were applied, and YOLOv8s was used to develop models. Bayesian optimization identified the best RGB adjustments, with performance assessed using mean average precision (mAP) and F<sub>1</sub>-scores. Results showed that RGB adjustment with 1.0 R-1.0 G-0.8 B improved polyp detection, achieving an mAP of 0.777 and an F<sub>1</sub>-score of 0.720 on internal test sets, and localization performance with an F<sub>1</sub>-score of 0.883 on adjusted images. External validation showed improvement but with a lower F<sub>1</sub>-score of 0.556. While RGB adjustments improved performance in our study, their generalizability to diverse datasets and clinical settings has yet to be validated. Thus, although RGB color adjustment enhances CNN model performance for detecting and localizing colorectal polyps, further research is needed to verify these improvements across diverse datasets and clinical settings.<ul><li><span>•</span><span><div><strong>RGB Color Adjustment</strong>: Applied RGB color adjustments to colonoscopic images to enhance the performance of Convolutional Neural Network (CNN) models.</div></span></li><li><span>•</span><span><div><strong>Model Development</strong>: Used YOLOv8s for polyp detection and localization, with Bayesian optimization to identify the best RGB adjustments.</div></span></li><li><span>•</span><span><div><strong>Performance Evaluation</strong>: Assessed model performance using mAP and F<sub>1</sub>-scores on both internal and external validation datasets.</div></span></li></ul></div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"14 ","pages":"Article 103187"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016125000354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Colorectal cancer, arising from adenomatous polyps, is a leading cause of cancer-related mortality, making early detection and removal crucial for preventing cancer progression. Machine learning is increasingly used to enhance polyp detection during colonoscopy, the gold standard for colorectal cancer screening, despite its operator-dependent miss rates. This study explores the impact of RGB color adjustment on Convolutional Neural Network (CNN) models for improving polyp detection and localization in colonoscopic images. Using datasets from Harvard Dataverse for training and internal validation, and LDPolypVideo-Benchmark for external validation, RGB color adjustments were applied, and YOLOv8s was used to develop models. Bayesian optimization identified the best RGB adjustments, with performance assessed using mean average precision (mAP) and F1-scores. Results showed that RGB adjustment with 1.0 R-1.0 G-0.8 B improved polyp detection, achieving an mAP of 0.777 and an F1-score of 0.720 on internal test sets, and localization performance with an F1-score of 0.883 on adjusted images. External validation showed improvement but with a lower F1-score of 0.556. While RGB adjustments improved performance in our study, their generalizability to diverse datasets and clinical settings has yet to be validated. Thus, although RGB color adjustment enhances CNN model performance for detecting and localizing colorectal polyps, further research is needed to verify these improvements across diverse datasets and clinical settings.
  • RGB Color Adjustment: Applied RGB color adjustments to colonoscopic images to enhance the performance of Convolutional Neural Network (CNN) models.
  • Model Development: Used YOLOv8s for polyp detection and localization, with Bayesian optimization to identify the best RGB adjustments.
  • Performance Evaluation: Assessed model performance using mAP and F1-scores on both internal and external validation datasets.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信