Tian Wang , Ping Wang , Feng Yang , Shuai Wang , Qiang Fang , Meng Chi
{"title":"Multi large language model collaboration framework for few-shot link prediction in evolutionary fault diagnosis event graphs","authors":"Tian Wang , Ping Wang , Feng Yang , Shuai Wang , Qiang Fang , Meng Chi","doi":"10.1016/j.jprocont.2024.103342","DOIUrl":null,"url":null,"abstract":"<div><div>Fault-tolerant control is crucial for ensuring flight safety in aircraft. However, existing methods for fault diagnosis in nonlinear systems face challenges such as data sparsity, limited generalization, and lack of explainability. To address these challenges, this paper proposes a multi-large language model (LLM) collaboration framework for few-shot link prediction in evolutionary fault diagnosis event graphs. The framework consists of two modules: the Clustering Language Model (LMc) and the Prediction Language Model (LMP). LMc utilizes the semantic understanding capabilities of LLMs to cluster entities and decompose large-scale graph data into smaller subgraphs, mitigating the impact of data sparsity on link prediction. LMP leverages the reasoning capabilities of LLMs to perform link prediction within each subgraph and fuses the prediction results to enhance accuracy and generalization. The completion of the link serves as a means to an end, which is to conduct fault diagnosis reasoning on a more detailed knowledge graph, thereby significantly improving the accuracy of fault diagnosis. Experimental results demonstrate that the proposed framework outperforms traditional embedding models and existing meta-learning methods on multiple datasets, particularly for sparse and background-rich datasets. This approach offers a novel solution for fault diagnosis in nonlinear systems, with significant theoretical and practical value.</div></div>","PeriodicalId":50079,"journal":{"name":"Journal of Process Control","volume":"145 ","pages":"Article 103342"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Process Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959152424001823","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Fault-tolerant control is crucial for ensuring flight safety in aircraft. However, existing methods for fault diagnosis in nonlinear systems face challenges such as data sparsity, limited generalization, and lack of explainability. To address these challenges, this paper proposes a multi-large language model (LLM) collaboration framework for few-shot link prediction in evolutionary fault diagnosis event graphs. The framework consists of two modules: the Clustering Language Model (LMc) and the Prediction Language Model (LMP). LMc utilizes the semantic understanding capabilities of LLMs to cluster entities and decompose large-scale graph data into smaller subgraphs, mitigating the impact of data sparsity on link prediction. LMP leverages the reasoning capabilities of LLMs to perform link prediction within each subgraph and fuses the prediction results to enhance accuracy and generalization. The completion of the link serves as a means to an end, which is to conduct fault diagnosis reasoning on a more detailed knowledge graph, thereby significantly improving the accuracy of fault diagnosis. Experimental results demonstrate that the proposed framework outperforms traditional embedding models and existing meta-learning methods on multiple datasets, particularly for sparse and background-rich datasets. This approach offers a novel solution for fault diagnosis in nonlinear systems, with significant theoretical and practical value.
期刊介绍:
This international journal covers the application of control theory, operations research, computer science and engineering principles to the solution of process control problems. In addition to the traditional chemical processing and manufacturing applications, the scope of process control problems involves a wide range of applications that includes energy processes, nano-technology, systems biology, bio-medical engineering, pharmaceutical processing technology, energy storage and conversion, smart grid, and data analytics among others.
Papers on the theory in these areas will also be accepted provided the theoretical contribution is aimed at the application and the development of process control techniques.
Topics covered include:
• Control applications• Process monitoring• Plant-wide control• Process control systems• Control techniques and algorithms• Process modelling and simulation• Design methods
Advanced design methods exclude well established and widely studied traditional design techniques such as PID tuning and its many variants. Applications in fields such as control of automotive engines, machinery and robotics are not deemed suitable unless a clear motivation for the relevance to process control is provided.