Macroscopic and microscopic characteristics of nanosilica sol-based composite grout in sealing fractured argillaceous rock: A comparative study with silica sol and cement slurry

IF 6.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhe Xiang , Nong Zhang , Dongjiang Pan , Zhengzheng Xie , Peng Wang , Dongxu Liang
{"title":"Macroscopic and microscopic characteristics of nanosilica sol-based composite grout in sealing fractured argillaceous rock: A comparative study with silica sol and cement slurry","authors":"Zhe Xiang ,&nbsp;Nong Zhang ,&nbsp;Dongjiang Pan ,&nbsp;Zhengzheng Xie ,&nbsp;Peng Wang ,&nbsp;Dongxu Liang","doi":"10.1016/j.jmrt.2024.12.128","DOIUrl":null,"url":null,"abstract":"<div><div>Argillaceous surrounding rock is prone to weakening when exposed to water, which can cause significant long-term deformations and instability in roadways. This paper focuses on a high-injectability, high-strength nanosilica sol-based composite grout, characterizing its sealing patterns at both the macroscopic and microscopic levels within multilevel porous argillaceous rock bodies. It also explores the microscopic structural interactions at the grout-rock interface. Additionally, the paper compares the performance of this composite grout with traditional silica sol and cement grout, providing initial insights into the anti-seepage reinforcement mechanism of the composite grout when used in grouting argillaceous soft rock. The research results show that, for composite grouting (1) The porosity and sealing of the grout-rock cementitious body decrease with increasing particle size of the rock blocks, with a minimum permeability coefficient of 2.34 × 10<sup>−8</sup> cm/s; (2) The presence and distribution pattern of multi-level pores of grout in rock fractures can be evaluated using the T2 spectrum of nuclear magnetic resonance (NMR). The pore volume of the cementitious body is mainly provided by large pores &lt;100 ms, and the composite grout has a good sealing effect on the matrix system of the argillaceous rock. (3) There is a dense transition area at the grout-rock interface, formed by the accumulation of nano-materials such as aluminate cement hydration-formed aluminate gel and silica sol. On the grout-rock interface, aluminate gel nucleates on nano-SiO<sub>2</sub>, continuously precipitating, aggregating, and cross-linking on the surface of silica particles to form a dense gel, filling the cavities at the grout-rock interface and increasing structural density. The research findings aim to provide theoretical support and experimental research basis for the practical application of composite grout in anti-seepage reinforcement engineering of argillaceous soft rock at the site.</div></div>","PeriodicalId":54332,"journal":{"name":"Journal of Materials Research and Technology-Jmr&t","volume":"34 ","pages":"Pages 898-911"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology-Jmr&t","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2238785424029314","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Argillaceous surrounding rock is prone to weakening when exposed to water, which can cause significant long-term deformations and instability in roadways. This paper focuses on a high-injectability, high-strength nanosilica sol-based composite grout, characterizing its sealing patterns at both the macroscopic and microscopic levels within multilevel porous argillaceous rock bodies. It also explores the microscopic structural interactions at the grout-rock interface. Additionally, the paper compares the performance of this composite grout with traditional silica sol and cement grout, providing initial insights into the anti-seepage reinforcement mechanism of the composite grout when used in grouting argillaceous soft rock. The research results show that, for composite grouting (1) The porosity and sealing of the grout-rock cementitious body decrease with increasing particle size of the rock blocks, with a minimum permeability coefficient of 2.34 × 10−8 cm/s; (2) The presence and distribution pattern of multi-level pores of grout in rock fractures can be evaluated using the T2 spectrum of nuclear magnetic resonance (NMR). The pore volume of the cementitious body is mainly provided by large pores <100 ms, and the composite grout has a good sealing effect on the matrix system of the argillaceous rock. (3) There is a dense transition area at the grout-rock interface, formed by the accumulation of nano-materials such as aluminate cement hydration-formed aluminate gel and silica sol. On the grout-rock interface, aluminate gel nucleates on nano-SiO2, continuously precipitating, aggregating, and cross-linking on the surface of silica particles to form a dense gel, filling the cavities at the grout-rock interface and increasing structural density. The research findings aim to provide theoretical support and experimental research basis for the practical application of composite grout in anti-seepage reinforcement engineering of argillaceous soft rock at the site.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Research and Technology-Jmr&t
Journal of Materials Research and Technology-Jmr&t Materials Science-Metals and Alloys
CiteScore
8.80
自引率
9.40%
发文量
1877
审稿时长
35 days
期刊介绍: The Journal of Materials Research and Technology is a publication of ABM - Brazilian Metallurgical, Materials and Mining Association - and publishes four issues per year also with a free version online (www.jmrt.com.br). The journal provides an international medium for the publication of theoretical and experimental studies related to Metallurgy, Materials and Minerals research and technology. Appropriate submissions to the Journal of Materials Research and Technology should include scientific and/or engineering factors which affect processes and products in the Metallurgy, Materials and Mining areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信