Effect of heat treatment on microstructure and properties of hybrid manufacturing TC4 alloy bonding zone

IF 6.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jun Zhang , Peizhi Yang , Haiou Yang , Wenzhe Yang , Kuitong Yang , Wenya Xu
{"title":"Effect of heat treatment on microstructure and properties of hybrid manufacturing TC4 alloy bonding zone","authors":"Jun Zhang ,&nbsp;Peizhi Yang ,&nbsp;Haiou Yang ,&nbsp;Wenzhe Yang ,&nbsp;Kuitong Yang ,&nbsp;Wenya Xu","doi":"10.1016/j.jmrt.2024.12.088","DOIUrl":null,"url":null,"abstract":"<div><div>Samples were deposited on the casting matrix of TC4 titanium alloy by arc fuse additive manufacturing technology. The effects of different heat treatments on the microstructure and properties of the bonding zone of the hybrid manufacturing sample were studied. Meanwhile, the corrosion resistance of different regions of the sample after heat treatment was studied. The results show that with the increase of annealing temperature, the α phase in the binding zone has a certain degree of coarsening, and the acicular martensite α 'phase at the top of the binding zone decomposes. At the same time, the yield strength reached 882.4 MPa when the annealing temperature is 800 °C. After solution aging treatment at 950 °C/1h/AC (Air Cooling)+600 °C/4h/AC, the non-uniformity of the structure of the bonding zone is improved, and the yield strength above 800 MPa is maintained at the highest post-fracture elongation of 8.6%, which demonstrates a good comprehensive performance. On the other hand, after 950 °C/1h/AC+600 °C/4h/AC solution aging treatment, the fusing of the continuous α phase and the decomposition of the acicular martensite α′ phase led to an improvement in the corrosion resistance of the bonding zone. At the same time, the improvement in the microstructure heterogeneity between different regions reduces the difference of corrosion resistance in different regions of TC4 titanium alloy components to a certain extent.</div></div>","PeriodicalId":54332,"journal":{"name":"Journal of Materials Research and Technology-Jmr&t","volume":"34 ","pages":"Pages 1108-1119"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology-Jmr&t","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2238785424028916","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Samples were deposited on the casting matrix of TC4 titanium alloy by arc fuse additive manufacturing technology. The effects of different heat treatments on the microstructure and properties of the bonding zone of the hybrid manufacturing sample were studied. Meanwhile, the corrosion resistance of different regions of the sample after heat treatment was studied. The results show that with the increase of annealing temperature, the α phase in the binding zone has a certain degree of coarsening, and the acicular martensite α 'phase at the top of the binding zone decomposes. At the same time, the yield strength reached 882.4 MPa when the annealing temperature is 800 °C. After solution aging treatment at 950 °C/1h/AC (Air Cooling)+600 °C/4h/AC, the non-uniformity of the structure of the bonding zone is improved, and the yield strength above 800 MPa is maintained at the highest post-fracture elongation of 8.6%, which demonstrates a good comprehensive performance. On the other hand, after 950 °C/1h/AC+600 °C/4h/AC solution aging treatment, the fusing of the continuous α phase and the decomposition of the acicular martensite α′ phase led to an improvement in the corrosion resistance of the bonding zone. At the same time, the improvement in the microstructure heterogeneity between different regions reduces the difference of corrosion resistance in different regions of TC4 titanium alloy components to a certain extent.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Research and Technology-Jmr&t
Journal of Materials Research and Technology-Jmr&t Materials Science-Metals and Alloys
CiteScore
8.80
自引率
9.40%
发文量
1877
审稿时长
35 days
期刊介绍: The Journal of Materials Research and Technology is a publication of ABM - Brazilian Metallurgical, Materials and Mining Association - and publishes four issues per year also with a free version online (www.jmrt.com.br). The journal provides an international medium for the publication of theoretical and experimental studies related to Metallurgy, Materials and Minerals research and technology. Appropriate submissions to the Journal of Materials Research and Technology should include scientific and/or engineering factors which affect processes and products in the Metallurgy, Materials and Mining areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信