Chao Wang , Weihai Huang , Chunxue Yi , Minqiang Jiang , Hu Huang , Jiwang Yan
{"title":"Nanoindentation behavior of the laser-repaired CoCrFeNiV high-entropy alloy","authors":"Chao Wang , Weihai Huang , Chunxue Yi , Minqiang Jiang , Hu Huang , Jiwang Yan","doi":"10.1016/j.intermet.2024.108585","DOIUrl":null,"url":null,"abstract":"<div><div>High-entropy alloys (HEAs) are solid-solution alloys composed of multiple elements, exhibiting excellent mechanical properties. The unique plastic deformation mechanism induced by their specific solid solution structures has attracted considerable attention but remains incompletely understood, particularly at the micro-scale. In this study, the surface morphology, chemical composition, and microstructures of CoCrFeNiV HEA before and after laser remelting repair were investigated. Nanoindentation testing was employed to characterize the surface hardness and creep behavior of the repaired surface. The distribution of surface hardness before and after laser remelting, as well as the indentation creep behavior under different loads, were studied. The mechanism of indentation creep on the repaired surface was discussed and analyzed. The effect of microstructures of HEAs, including precipitated phases and sub-grain boundaries, on dislocation-dominated micro-scale plastic deformation was elucidated by the transmission electron microscope (TEM). This study contributes to an in-depth understanding of the creep behavior and micro-scale deformation mechanisms in HEAs.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"177 ","pages":"Article 108585"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979524004047","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
High-entropy alloys (HEAs) are solid-solution alloys composed of multiple elements, exhibiting excellent mechanical properties. The unique plastic deformation mechanism induced by their specific solid solution structures has attracted considerable attention but remains incompletely understood, particularly at the micro-scale. In this study, the surface morphology, chemical composition, and microstructures of CoCrFeNiV HEA before and after laser remelting repair were investigated. Nanoindentation testing was employed to characterize the surface hardness and creep behavior of the repaired surface. The distribution of surface hardness before and after laser remelting, as well as the indentation creep behavior under different loads, were studied. The mechanism of indentation creep on the repaired surface was discussed and analyzed. The effect of microstructures of HEAs, including precipitated phases and sub-grain boundaries, on dislocation-dominated micro-scale plastic deformation was elucidated by the transmission electron microscope (TEM). This study contributes to an in-depth understanding of the creep behavior and micro-scale deformation mechanisms in HEAs.
期刊介绍:
This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys.
The journal reports the science and engineering of metallic materials in the following aspects:
Theories and experiments which address the relationship between property and structure in all length scales.
Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations.
Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties.
Technological applications resulting from the understanding of property-structure relationship in materials.
Novel and cutting-edge results warranting rapid communication.
The journal also publishes special issues on selected topics and overviews by invitation only.