Effect of the B chromosome-located long non-coding RNAs on gene expression in maize

Xin Liu , Wenjie Yue , Shiqi Lin, Yuxian Yang, Tong Chen, Xiaowen Shi
{"title":"Effect of the B chromosome-located long non-coding RNAs on gene expression in maize","authors":"Xin Liu ,&nbsp;Wenjie Yue ,&nbsp;Shiqi Lin,&nbsp;Yuxian Yang,&nbsp;Tong Chen,&nbsp;Xiaowen Shi","doi":"10.1016/j.cropd.2024.100091","DOIUrl":null,"url":null,"abstract":"<div><div>Using artificial chromosomes in maize breeding allows for site-specific integration of multigene stacks, effectively overcoming the limitations of conventional transgenic approaches. The maize B chromosome, which is dispensable and highly heterochromatic, has minimal impact on phenotypes at low copy numbers, making it a promising platform for engineering artificial chromosomes. However, recent studies have demonstrated that the maize B chromosome can impact gene expression and recombination on the A chromosome. Understanding the genetic characteristics of the B chromosomes and their impact on gene expression is essential for their application in artificial chromosome construction. Despite advancements in elucidating how the B chromosome affects A chromosome expression, the role of long non-coding RNAs (lncRNAs) in this context remains unclear. In this study, we analyzed the RNA-seq data from leaf tissue of plants with 0–7 ​B chromosomes, identifying a total of 1614 lncRNAs, including 1516 A chromosome-located and 98 ​B chromosome-located lncRNAs, 72 of which are specific to the B chromosome. While A-located lncRNAs show greater dependence on the mere presence of the B chromosome, the expression of B-located lncRNAs is significantly affected by the number of B chromosomes present. Regulatory networks constructed in this study suggest that B-located lncRNAs may drive the differential expression of A chromosome-located transcription factors and genes associated with circadian rhythm regulation, indicating their regulatory role in A chromosome gene expression.</div></div>","PeriodicalId":100341,"journal":{"name":"Crop Design","volume":"4 1","pages":"Article 100091"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crop Design","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772899424000405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Using artificial chromosomes in maize breeding allows for site-specific integration of multigene stacks, effectively overcoming the limitations of conventional transgenic approaches. The maize B chromosome, which is dispensable and highly heterochromatic, has minimal impact on phenotypes at low copy numbers, making it a promising platform for engineering artificial chromosomes. However, recent studies have demonstrated that the maize B chromosome can impact gene expression and recombination on the A chromosome. Understanding the genetic characteristics of the B chromosomes and their impact on gene expression is essential for their application in artificial chromosome construction. Despite advancements in elucidating how the B chromosome affects A chromosome expression, the role of long non-coding RNAs (lncRNAs) in this context remains unclear. In this study, we analyzed the RNA-seq data from leaf tissue of plants with 0–7 ​B chromosomes, identifying a total of 1614 lncRNAs, including 1516 A chromosome-located and 98 ​B chromosome-located lncRNAs, 72 of which are specific to the B chromosome. While A-located lncRNAs show greater dependence on the mere presence of the B chromosome, the expression of B-located lncRNAs is significantly affected by the number of B chromosomes present. Regulatory networks constructed in this study suggest that B-located lncRNAs may drive the differential expression of A chromosome-located transcription factors and genes associated with circadian rhythm regulation, indicating their regulatory role in A chromosome gene expression.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信