Pedestrian crossing decisions can be explained by bounded optimal decision-making under noisy visual perception

IF 7.6 1区 工程技术 Q1 TRANSPORTATION SCIENCE & TECHNOLOGY
Yueyang Wang , Aravinda Ramakrishnan Srinivasan , Jussi P.P. Jokinen , Antti Oulasvirta , Gustav Markkula
{"title":"Pedestrian crossing decisions can be explained by bounded optimal decision-making under noisy visual perception","authors":"Yueyang Wang ,&nbsp;Aravinda Ramakrishnan Srinivasan ,&nbsp;Jussi P.P. Jokinen ,&nbsp;Antti Oulasvirta ,&nbsp;Gustav Markkula","doi":"10.1016/j.trc.2024.104963","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a model of pedestrian crossing decisions based on the theory of computational rationality. It is assumed that crossing decisions are boundedly optimal, with bounds on optimality arising from human cognitive constraints. While previous models of pedestrian behaviour have been either ‘black-box’ machine learning models or mechanistic models with explicit assumptions about cognitive factors, we combine both approaches. Specifically, we mechanistically model noisy human visual perception and model reward considering human constraints in crossing, but we use reinforcement learning to learn boundedly optimal behaviour policy. The model reproduces a larger number of known empirical phenomena than previous models, in particular: (1) the effect of the time to arrival of an approaching vehicle on whether the pedestrian accepts the gap, the effect of the vehicle’s speed on both (2) gap acceptance and (3) pedestrian timing of crossing in front of yielding vehicles, and (4) the effect on this crossing timing of the stopping distance of the yielding vehicle. Notably, our findings suggest that behaviours previously framed as ’biases’ in decision-making, such as speed-dependent gap acceptance, might instead be a product of rational adaptation to the constraints of visual perception. Our approach also permits fitting the parameters of cognitive constraints and rewards per individual to better account for individual differences, achieving good quantitative alignment with experimental data. To conclude, by leveraging both RL and mechanistic modelling, our model offers novel insights into pedestrian behaviour and may provide a useful foundation for more accurate and scalable pedestrian models.</div></div>","PeriodicalId":54417,"journal":{"name":"Transportation Research Part C-Emerging Technologies","volume":"171 ","pages":"Article 104963"},"PeriodicalIF":7.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part C-Emerging Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968090X24004844","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a model of pedestrian crossing decisions based on the theory of computational rationality. It is assumed that crossing decisions are boundedly optimal, with bounds on optimality arising from human cognitive constraints. While previous models of pedestrian behaviour have been either ‘black-box’ machine learning models or mechanistic models with explicit assumptions about cognitive factors, we combine both approaches. Specifically, we mechanistically model noisy human visual perception and model reward considering human constraints in crossing, but we use reinforcement learning to learn boundedly optimal behaviour policy. The model reproduces a larger number of known empirical phenomena than previous models, in particular: (1) the effect of the time to arrival of an approaching vehicle on whether the pedestrian accepts the gap, the effect of the vehicle’s speed on both (2) gap acceptance and (3) pedestrian timing of crossing in front of yielding vehicles, and (4) the effect on this crossing timing of the stopping distance of the yielding vehicle. Notably, our findings suggest that behaviours previously framed as ’biases’ in decision-making, such as speed-dependent gap acceptance, might instead be a product of rational adaptation to the constraints of visual perception. Our approach also permits fitting the parameters of cognitive constraints and rewards per individual to better account for individual differences, achieving good quantitative alignment with experimental data. To conclude, by leveraging both RL and mechanistic modelling, our model offers novel insights into pedestrian behaviour and may provide a useful foundation for more accurate and scalable pedestrian models.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
15.80
自引率
12.00%
发文量
332
审稿时长
64 days
期刊介绍: Transportation Research: Part C (TR_C) is dedicated to showcasing high-quality, scholarly research that delves into the development, applications, and implications of transportation systems and emerging technologies. Our focus lies not solely on individual technologies, but rather on their broader implications for the planning, design, operation, control, maintenance, and rehabilitation of transportation systems, services, and components. In essence, the intellectual core of the journal revolves around the transportation aspect rather than the technology itself. We actively encourage the integration of quantitative methods from diverse fields such as operations research, control systems, complex networks, computer science, and artificial intelligence. Join us in exploring the intersection of transportation systems and emerging technologies to drive innovation and progress in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信