Advances in bioremediation strategies for PFAS-contaminated water and soil

Ayushman Bhattacharya , Jesna Fathima , Sunith Varghese , Pritha Chatterjee , Venkataramana Gadhamshetty
{"title":"Advances in bioremediation strategies for PFAS-contaminated water and soil","authors":"Ayushman Bhattacharya ,&nbsp;Jesna Fathima ,&nbsp;Sunith Varghese ,&nbsp;Pritha Chatterjee ,&nbsp;Venkataramana Gadhamshetty","doi":"10.1016/j.seh.2024.100126","DOIUrl":null,"url":null,"abstract":"<div><div>Per- and poly-fluoroalkyl substances (PFAS) are emerging contaminants, posing adverse impacts on water and soils due to their persistence, chemical transformations, and bioaccumulation. With over 15,000 different PFAS compounds being identified globally, their toxic effects and half-life spanning from 72 ​h to 8.5 years in humans are a serious concern. Bioremediation has emerged as an environmentally-friendly and cost-effective approach for PFAS degradation. However, there is still limited understanding of PFAS interactions with microorganisms and the roles of promising microbes in transforming PFAS into non-toxic end products. The knowledge about biotransformation of PFAS is essential to ameliorate the adaptation of microorganisms to local matrix and environment as well as to strengthen the natural enzymatic pathways and activities at a commercial scale, which is a major challenge. This review aims to address these gaps by providing a comprehensive analysis of recent developments in the bioremediation of PFAS-contaminated soil and water systems. The review focuses on the capabilities of phytoremediation, bioelectrochemical systems, and microbial species, including bacteria, fungi, and microalgae. Additionally, this study offers an in-depth overview of PFAS sources, their physicochemical characteristics, and their environmental fate and transport. Furthermore, it examines microbial metabolic activity, the formation of degradation intermediates, the role of co-metabolism, and the behaviour of microorganisms under PFAS stress as well as highlights future research directions. The key findings from this review include: 1) microbial community composition, field application, presence of co-substrate and cationic complexation govern biotransformation and fate of PFAS, 2) long chain PFAS are more susceptible to accumulate in the roots due to high hydrophobicity, and 3) algae-bacteria symbiotic relationships reduce microalgae growth inhibition and stimulates PFAS removal. Overall, this review emphasizes the potential of bioprocesses for large-scale PFAS bioremediation, contributing to environmental protection and mitigating the risks associated with PFAS contamination.</div></div>","PeriodicalId":94356,"journal":{"name":"Soil & Environmental Health","volume":"3 1","pages":"Article 100126"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil & Environmental Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949919424000694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Per- and poly-fluoroalkyl substances (PFAS) are emerging contaminants, posing adverse impacts on water and soils due to their persistence, chemical transformations, and bioaccumulation. With over 15,000 different PFAS compounds being identified globally, their toxic effects and half-life spanning from 72 ​h to 8.5 years in humans are a serious concern. Bioremediation has emerged as an environmentally-friendly and cost-effective approach for PFAS degradation. However, there is still limited understanding of PFAS interactions with microorganisms and the roles of promising microbes in transforming PFAS into non-toxic end products. The knowledge about biotransformation of PFAS is essential to ameliorate the adaptation of microorganisms to local matrix and environment as well as to strengthen the natural enzymatic pathways and activities at a commercial scale, which is a major challenge. This review aims to address these gaps by providing a comprehensive analysis of recent developments in the bioremediation of PFAS-contaminated soil and water systems. The review focuses on the capabilities of phytoremediation, bioelectrochemical systems, and microbial species, including bacteria, fungi, and microalgae. Additionally, this study offers an in-depth overview of PFAS sources, their physicochemical characteristics, and their environmental fate and transport. Furthermore, it examines microbial metabolic activity, the formation of degradation intermediates, the role of co-metabolism, and the behaviour of microorganisms under PFAS stress as well as highlights future research directions. The key findings from this review include: 1) microbial community composition, field application, presence of co-substrate and cationic complexation govern biotransformation and fate of PFAS, 2) long chain PFAS are more susceptible to accumulate in the roots due to high hydrophobicity, and 3) algae-bacteria symbiotic relationships reduce microalgae growth inhibition and stimulates PFAS removal. Overall, this review emphasizes the potential of bioprocesses for large-scale PFAS bioremediation, contributing to environmental protection and mitigating the risks associated with PFAS contamination.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信