Rapid and effective absorption of dye molecules from their low-concentrated water solutions by organically cross-linked polyacrylamide-hexagonal boron nitride nanocomposite and polyacrylamide hydrogels

Mohan Raj Krishnan, Edreese H Alsharaeh
{"title":"Rapid and effective absorption of dye molecules from their low-concentrated water solutions by organically cross-linked polyacrylamide-hexagonal boron nitride nanocomposite and polyacrylamide hydrogels","authors":"Mohan Raj Krishnan,&nbsp;Edreese H Alsharaeh","doi":"10.1016/j.colsuc.2025.100055","DOIUrl":null,"url":null,"abstract":"<div><div>Dye-laden wastewater from textile industries significantly impacts the environment and, eventually, human health. It is, therefore, necessary to treat wastewater effluent from textile industries before it is discharged into water sources. Herein, we report the potential of organically cross-linked polyacrylamide-based nanocomposite hydrogels to rapidly and effectively absorb different dye molecules (methylene blue (MB), phenol red (PR), and methyl orange (MO)) from their respective low-concentrated water solutions. The polyacrylamide-hexagonal boron nitride nanocomposite hydrogel (PAM/hBN) was prepared by reacting PAM molecules with organic cross-linkers such as N, N’ methylene bisacrylamide (MBS) in the presence of hBN at high temperatures (150 °C; 8 h.). The FT-IR results revealed the successful formation of the PAM/hBN nanocomposite hydrogels. The differential scanning calorimetric (DSC) results also complement the nanocomposite formation as the melting temperature of PAM/hBN nanocomposite is comparatively higher than that of the neat-PAM hydrogel. The SEM showed that the PAM/hBN nanocomposite has macroporous morphology (average pore size of 2 μm) while neat-PAM hydrogel exhibited dense structures. The equilibrium absorption of PAM/hBN nanocomposite hydrogels is as high as 13.5 mg/g, while the equilibrium is reached within 10 min. The porous morphology of the nanocomposite hydrogels promotes the mass transfer process and leads to the rapid absorption of dye molecules from low-concentrated water solutions.</div></div>","PeriodicalId":100290,"journal":{"name":"Colloids and Surfaces C: Environmental Aspects","volume":"3 ","pages":"Article 100055"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloids and Surfaces C: Environmental Aspects","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949759025000022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Dye-laden wastewater from textile industries significantly impacts the environment and, eventually, human health. It is, therefore, necessary to treat wastewater effluent from textile industries before it is discharged into water sources. Herein, we report the potential of organically cross-linked polyacrylamide-based nanocomposite hydrogels to rapidly and effectively absorb different dye molecules (methylene blue (MB), phenol red (PR), and methyl orange (MO)) from their respective low-concentrated water solutions. The polyacrylamide-hexagonal boron nitride nanocomposite hydrogel (PAM/hBN) was prepared by reacting PAM molecules with organic cross-linkers such as N, N’ methylene bisacrylamide (MBS) in the presence of hBN at high temperatures (150 °C; 8 h.). The FT-IR results revealed the successful formation of the PAM/hBN nanocomposite hydrogels. The differential scanning calorimetric (DSC) results also complement the nanocomposite formation as the melting temperature of PAM/hBN nanocomposite is comparatively higher than that of the neat-PAM hydrogel. The SEM showed that the PAM/hBN nanocomposite has macroporous morphology (average pore size of 2 μm) while neat-PAM hydrogel exhibited dense structures. The equilibrium absorption of PAM/hBN nanocomposite hydrogels is as high as 13.5 mg/g, while the equilibrium is reached within 10 min. The porous morphology of the nanocomposite hydrogels promotes the mass transfer process and leads to the rapid absorption of dye molecules from low-concentrated water solutions.
有机交联聚丙烯酰胺-六方氮化硼纳米复合材料和聚丙烯酰胺水凝胶快速有效地从低浓度水溶液中吸收染料分子
纺织工业产生的含染料废水严重影响环境,并最终影响人类健康。因此,有必要在纺织工业的废水排入水源之前对其进行处理。在此,我们报告了有机交联聚丙烯酰胺基纳米复合水凝胶的潜力,以快速有效地吸收不同的染料分子(亚甲基蓝(MB),酚红(PR)和甲基橙(MO))从各自的低浓度水溶液中。在hBN存在下,PAM分子与N, N′亚甲基双丙烯酰胺(MBS)等有机交联剂在高温下(150 ℃; 8 h)。FT-IR结果显示PAM/hBN纳米复合水凝胶的成功形成。差示扫描量热(DSC)结果也补充了纳米复合材料的形成,因为PAM/hBN纳米复合材料的熔融温度相对高于净PAM水凝胶。SEM结果表明,PAM/hBN纳米复合材料具有大孔结构(平均孔径为2 μm),而净PAM水凝胶结构致密。PAM/hBN纳米复合水凝胶的平衡吸收率高达13.5 mg/g,在10 min内达到平衡。纳米复合水凝胶的多孔形态促进了传质过程,并导致染料分子从低浓度水溶液中快速吸收。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信