Zhimin Yang , Shilin Feng , Chongxun Fang , Yongfu Cai , Zhenhua Han , Haimei Li , Ran Wei
{"title":"Ultrastrong and ductile Fe60Co20Ni15Mo5 medium-entropy alloy with high density nanoprecipitates","authors":"Zhimin Yang , Shilin Feng , Chongxun Fang , Yongfu Cai , Zhenhua Han , Haimei Li , Ran Wei","doi":"10.1016/j.intermet.2024.108606","DOIUrl":null,"url":null,"abstract":"<div><div>We report a novel precipitation-strengthened Fe<sub>60</sub>Co<sub>20</sub>Ni<sub>15</sub>Mo<sub>5</sub> medium entropy alloy (MEA). The MEA with single-phase BCC microstructure exhibits a high cryogenic tensile strength of ∼2.7 GPa, surpassing the state-of-the-art MEAs and high strength alloys. Besides, a unique dual-phase structure can be obtained by using the reverse process, that is, high-density spherical nanoprecipitates embedded within a BCC matrix and a minor presence of nanoprecipitates within the reverted FCC phase. Due to precipitation strengthening and transformation-induced plasticity effect, the dual-phase MEA exhibits outstanding cryogenic strength (∼2.2 GPa) and ductility (∼20 %) combinations.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"177 ","pages":"Article 108606"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979524004254","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We report a novel precipitation-strengthened Fe60Co20Ni15Mo5 medium entropy alloy (MEA). The MEA with single-phase BCC microstructure exhibits a high cryogenic tensile strength of ∼2.7 GPa, surpassing the state-of-the-art MEAs and high strength alloys. Besides, a unique dual-phase structure can be obtained by using the reverse process, that is, high-density spherical nanoprecipitates embedded within a BCC matrix and a minor presence of nanoprecipitates within the reverted FCC phase. Due to precipitation strengthening and transformation-induced plasticity effect, the dual-phase MEA exhibits outstanding cryogenic strength (∼2.2 GPa) and ductility (∼20 %) combinations.
期刊介绍:
This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys.
The journal reports the science and engineering of metallic materials in the following aspects:
Theories and experiments which address the relationship between property and structure in all length scales.
Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations.
Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties.
Technological applications resulting from the understanding of property-structure relationship in materials.
Novel and cutting-edge results warranting rapid communication.
The journal also publishes special issues on selected topics and overviews by invitation only.