Why are you traveling? Inferring trip profiles from online reviews and domain-knowledge

Q1 Social Sciences
Lucas G.S. Félix, Washington Cunha, Claudio M.V. de Andrade, Marcos André Gonçalves, Jussara M. Almeida
{"title":"Why are you traveling? Inferring trip profiles from online reviews and domain-knowledge","authors":"Lucas G.S. Félix,&nbsp;Washington Cunha,&nbsp;Claudio M.V. de Andrade,&nbsp;Marcos André Gonçalves,&nbsp;Jussara M. Almeida","doi":"10.1016/j.osnem.2024.100296","DOIUrl":null,"url":null,"abstract":"<div><div>This paper addresses the task of inferring trip profiles (TPs), which consists of determining the profile of travelers engaged in a particular trip given a set of possible categories. TPs may include working trips, leisure journeys with friends, or family vacations. Travelers with different TPs typically have varied plans regarding destinations and timing. TP inference may provide significant insights for numerous tourism-related services, such as geo-recommender systems and tour planning. We focus on TP inference using TripAdvisor, a prominent tourism-centric social media platform, as our data source. Our goal is to evaluate how effectively we can automatically discern the TP from a user review on this platform. A user review encompasses both textual feedback and domain-specific data (such as a user’s previous visits to the location), which are crucial for accurately characterizing the trip. To achieve this, we assess various feature sets (including text and domain-specific) and implement advanced machine learning models, such as neural Transformers and open-source Large Language Models (Llama 2, Bloom). We examine two variants of the TP inference task—binary and multi-class. Surprisingly, our findings reveal that combining domain-specific features with TF-IDF-based representation in an LGBM model performs as well as more complex Transformer and LLM models, while being much more efficient and interpretable.</div></div>","PeriodicalId":52228,"journal":{"name":"Online Social Networks and Media","volume":"45 ","pages":"Article 100296"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Online Social Networks and Media","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468696424000211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the task of inferring trip profiles (TPs), which consists of determining the profile of travelers engaged in a particular trip given a set of possible categories. TPs may include working trips, leisure journeys with friends, or family vacations. Travelers with different TPs typically have varied plans regarding destinations and timing. TP inference may provide significant insights for numerous tourism-related services, such as geo-recommender systems and tour planning. We focus on TP inference using TripAdvisor, a prominent tourism-centric social media platform, as our data source. Our goal is to evaluate how effectively we can automatically discern the TP from a user review on this platform. A user review encompasses both textual feedback and domain-specific data (such as a user’s previous visits to the location), which are crucial for accurately characterizing the trip. To achieve this, we assess various feature sets (including text and domain-specific) and implement advanced machine learning models, such as neural Transformers and open-source Large Language Models (Llama 2, Bloom). We examine two variants of the TP inference task—binary and multi-class. Surprisingly, our findings reveal that combining domain-specific features with TF-IDF-based representation in an LGBM model performs as well as more complex Transformer and LLM models, while being much more efficient and interpretable.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Online Social Networks and Media
Online Social Networks and Media Social Sciences-Communication
CiteScore
10.60
自引率
0.00%
发文量
32
审稿时长
44 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信