BD2TSumm: A Benchmark Dataset for Abstractive Disaster Tweet Summarization

Q1 Social Sciences
Piyush Kumar Garg , Roshni Chakraborty , Sourav Kumar Dandapat
{"title":"BD2TSumm: A Benchmark Dataset for Abstractive Disaster Tweet Summarization","authors":"Piyush Kumar Garg ,&nbsp;Roshni Chakraborty ,&nbsp;Sourav Kumar Dandapat","doi":"10.1016/j.osnem.2024.100299","DOIUrl":null,"url":null,"abstract":"<div><div>Online social media platforms, such as Twitter, are mediums for valuable updates during disasters. However, the large scale of available information makes it difficult for humans to identify relevant information from the available information. An automatic summary of these tweets provides identification of relevant information easy and ensures a holistic overview of a disaster event to process the aid for disaster response. In literature, there are two types of abstractive disaster tweet summarization approaches based on the format of output summary: key-phrased-based (where summary is a set of key-phrases) and sentence-based (where summary is a paragraph consisting of sentences). Existing sentence-based abstractive approaches are either unsupervised or supervised. However, both types of approaches require a sizable amount of ground-truth summaries for training and/or evaluation such that they work on disaster events irrespective of type and location. The lack of abstractive disaster ground-truth summaries and guidelines for annotation motivates us to come up with a systematic procedure to create abstractive sentence ground-truth summaries of disaster events. Therefore, this paper presents a two-step systematic annotation procedure for sentence-based abstractive summary creation. Additionally, we release <em>BD2TSumm</em>, i.e., a benchmark ground-truth dataset for evaluating the sentence-based abstractive summarization approaches for disaster events. <em>BD2TSumm</em> consists of 15 ground-truth summaries belonging to 5 different continents and both natural and man-made disaster types. Furthermore, to ensure the high quality of the generated ground-truth summaries, we evaluate them qualitatively (using five metrics) and quantitatively (using two metrics). Finally, we compare 12 existing State-Of-The-Art (SOTA) abstractive summarization approaches on these ground-truth summaries using ROUGE-N F1-score.</div></div>","PeriodicalId":52228,"journal":{"name":"Online Social Networks and Media","volume":"45 ","pages":"Article 100299"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Online Social Networks and Media","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468696424000247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Online social media platforms, such as Twitter, are mediums for valuable updates during disasters. However, the large scale of available information makes it difficult for humans to identify relevant information from the available information. An automatic summary of these tweets provides identification of relevant information easy and ensures a holistic overview of a disaster event to process the aid for disaster response. In literature, there are two types of abstractive disaster tweet summarization approaches based on the format of output summary: key-phrased-based (where summary is a set of key-phrases) and sentence-based (where summary is a paragraph consisting of sentences). Existing sentence-based abstractive approaches are either unsupervised or supervised. However, both types of approaches require a sizable amount of ground-truth summaries for training and/or evaluation such that they work on disaster events irrespective of type and location. The lack of abstractive disaster ground-truth summaries and guidelines for annotation motivates us to come up with a systematic procedure to create abstractive sentence ground-truth summaries of disaster events. Therefore, this paper presents a two-step systematic annotation procedure for sentence-based abstractive summary creation. Additionally, we release BD2TSumm, i.e., a benchmark ground-truth dataset for evaluating the sentence-based abstractive summarization approaches for disaster events. BD2TSumm consists of 15 ground-truth summaries belonging to 5 different continents and both natural and man-made disaster types. Furthermore, to ensure the high quality of the generated ground-truth summaries, we evaluate them qualitatively (using five metrics) and quantitatively (using two metrics). Finally, we compare 12 existing State-Of-The-Art (SOTA) abstractive summarization approaches on these ground-truth summaries using ROUGE-N F1-score.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Online Social Networks and Media
Online Social Networks and Media Social Sciences-Communication
CiteScore
10.60
自引率
0.00%
发文量
32
审稿时长
44 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信