Law of conservation-guided neural network with gradient aggregation for improved energy efficiency optimization in industrial processes

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Santi Bardeeniz , Chanin Panjapornpon , Moonyong Lee
{"title":"Law of conservation-guided neural network with gradient aggregation for improved energy efficiency optimization in industrial processes","authors":"Santi Bardeeniz ,&nbsp;Chanin Panjapornpon ,&nbsp;Moonyong Lee","doi":"10.1016/j.egyai.2025.100475","DOIUrl":null,"url":null,"abstract":"<div><div>Energy efficiency in industrial systems remains a critical challenge, with traditional data-driven models often limited by model accuracy and data availability. Incorporation of physical laws governing energy systems can improve performance and physical consistency, but the model often struggles with the calculation of loss and ignores dynamic interplays between sub-systems, which can result in oversimplification and a lack of practical applicability. Therefore, this study investigated a theoretical framework for developing a law of conservation-guided neural network aimed at enhancing energy efficiency prediction in industrial systems. The framework integrates physical principles directly into floating nodes constructed using a long short-term memory architecture to help the model formulate the relationship between process variables, while gradient aggregation increases liquidity and interpretability. Through evaluation of two large-scale case studies—vinyl chloride monomer and detergent powder production—the proposed model produced substantial improvements in prediction accuracy and model reliability, with a test prediction improvement of 12.2 % and 5.87 % over published methods. Compared to network architecture modification approaches, the proposed model provided higher reliability and reproducibility in energy efficiency predictions. Moreover, the model successfully identified energy inefficiencies, resulting in a 4.21 % reduction in energy consumption and a corresponding 377.35 tons of carbon emissions reduction.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"20 ","pages":"Article 100475"},"PeriodicalIF":9.6000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546825000072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Energy efficiency in industrial systems remains a critical challenge, with traditional data-driven models often limited by model accuracy and data availability. Incorporation of physical laws governing energy systems can improve performance and physical consistency, but the model often struggles with the calculation of loss and ignores dynamic interplays between sub-systems, which can result in oversimplification and a lack of practical applicability. Therefore, this study investigated a theoretical framework for developing a law of conservation-guided neural network aimed at enhancing energy efficiency prediction in industrial systems. The framework integrates physical principles directly into floating nodes constructed using a long short-term memory architecture to help the model formulate the relationship between process variables, while gradient aggregation increases liquidity and interpretability. Through evaluation of two large-scale case studies—vinyl chloride monomer and detergent powder production—the proposed model produced substantial improvements in prediction accuracy and model reliability, with a test prediction improvement of 12.2 % and 5.87 % over published methods. Compared to network architecture modification approaches, the proposed model provided higher reliability and reproducibility in energy efficiency predictions. Moreover, the model successfully identified energy inefficiencies, resulting in a 4.21 % reduction in energy consumption and a corresponding 377.35 tons of carbon emissions reduction.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信