Comparison of Kolmogorov–Arnold Networks and Multi-Layer Perceptron for modelling and optimisation analysis of energy systems

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Talha Ansar , Waqar Muhammad Ashraf
{"title":"Comparison of Kolmogorov–Arnold Networks and Multi-Layer Perceptron for modelling and optimisation analysis of energy systems","authors":"Talha Ansar ,&nbsp;Waqar Muhammad Ashraf","doi":"10.1016/j.egyai.2025.100473","DOIUrl":null,"url":null,"abstract":"<div><div>Considering the improved interpretable performance of Kolmogorov–Arnold Networks (KAN) algorithm compared to multi-layer perceptron (MLP) algorithm, a fundamental research question arises on how modifying the loss function of KAN affects its modelling performance for energy systems, particularly industrial-scale thermal power plants. In this regard, first, we modify the loss function of both KAN and MLP algorithms and embed Pearson Correlation Coefficient (PCC). Second, the algorithmic configurations built on PCC, i.e., KAN_PCC and MLP_PCC as well as original architecture of KAN and MLP are deployed for modelling and optimisation analyses for two case studies of energy systems: (i) energy efficiency cooling and energy efficiency heating of buildings, and (ii) power generation operation of 660 MW capacity thermal power plant. The analysis reveals superior modelling performance of KAN and KAN_PCC algorithms than those of MLP and MLP_PCC for the two case studies. KAN models are embedded in the optimisation framework of nonlinear programming and feasible optimal solutions are estimated, maximising thermal efficiency up to 42.17 ± 0.88 % and minimising turbine heat rate to 7487 ± 129 kJ/kWh corresponding to power generation of 500 ± 14 MW for the thermal power plant. It is anticipated that the scientific, research and industrial community may benefit from the fundamental insights presented in this paper for the ML algorithm selection and carrying out model-based optimisation analysis for the performance enhancement of energy systems.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"20 ","pages":"Article 100473"},"PeriodicalIF":9.6000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546825000059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Considering the improved interpretable performance of Kolmogorov–Arnold Networks (KAN) algorithm compared to multi-layer perceptron (MLP) algorithm, a fundamental research question arises on how modifying the loss function of KAN affects its modelling performance for energy systems, particularly industrial-scale thermal power plants. In this regard, first, we modify the loss function of both KAN and MLP algorithms and embed Pearson Correlation Coefficient (PCC). Second, the algorithmic configurations built on PCC, i.e., KAN_PCC and MLP_PCC as well as original architecture of KAN and MLP are deployed for modelling and optimisation analyses for two case studies of energy systems: (i) energy efficiency cooling and energy efficiency heating of buildings, and (ii) power generation operation of 660 MW capacity thermal power plant. The analysis reveals superior modelling performance of KAN and KAN_PCC algorithms than those of MLP and MLP_PCC for the two case studies. KAN models are embedded in the optimisation framework of nonlinear programming and feasible optimal solutions are estimated, maximising thermal efficiency up to 42.17 ± 0.88 % and minimising turbine heat rate to 7487 ± 129 kJ/kWh corresponding to power generation of 500 ± 14 MW for the thermal power plant. It is anticipated that the scientific, research and industrial community may benefit from the fundamental insights presented in this paper for the ML algorithm selection and carrying out model-based optimisation analysis for the performance enhancement of energy systems.

Abstract Image

用于能源系统建模和优化分析的Kolmogorov-Arnold网络和多层感知器的比较
考虑到与多层感知器(MLP)算法相比,Kolmogorov-Arnold Networks (KAN)算法的可解释性能有所提高,如何修改KAN的损失函数影响其在能源系统(特别是工业规模火电厂)中的建模性能成为一个基本的研究问题。在这方面,我们首先修改了KAN和MLP算法的损失函数,并嵌入了Pearson相关系数(PCC)。其次,利用基于PCC的算法配置,即KAN_PCC和MLP_PCC,以及KAN和MLP的原始架构,对两个能源系统案例进行建模和优化分析:(i)建筑物的节能制冷和节能供暖,(ii) 660兆瓦容量的火电厂的发电运行。分析表明,KAN和KAN_PCC算法的建模性能优于MLP和MLP_PCC算法。将KAN模型嵌入到非线性规划优化框架中,估计出可行的最优解,热效率最高可达42.17±0.88%,涡轮热率最低可达7487±129 kJ/kWh,对应于火力发电厂500±14 MW的发电量。预计科学、研究和工业界可能会受益于本文提出的ML算法选择的基本见解,并为能源系统的性能增强进行基于模型的优化分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信