Physics-Informed Neural Network for modeling and predicting temperature fluctuations in proton exchange membrane electrolysis

IF 9.6 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Islam Zerrougui , Zhongliang Li , Daniel Hissel
{"title":"Physics-Informed Neural Network for modeling and predicting temperature fluctuations in proton exchange membrane electrolysis","authors":"Islam Zerrougui ,&nbsp;Zhongliang Li ,&nbsp;Daniel Hissel","doi":"10.1016/j.egyai.2025.100474","DOIUrl":null,"url":null,"abstract":"<div><div>Proton Exchange Membrane (PEM) electrolysis stands as a cornerstone technology in the clean energy sector, driving the production of hydrogen and oxygen from water. A critical aspect of ensuring the efficiency and safety of this process lies in the precise monitoring and control of temperature at the electrolysis outlet. However, accurately characterizing temperature changes within the PEM electrolysis system can be challenging due to the fluctuation of renewable energies. This study introduces an approach integrating data with fundamental physics principles known as Physics-Informed Neural Networks (PINNs). This method solves differential equations and estimates the unknown parameters governing the temperature dynamics within the PEM electrolysis system. We consider two distinct scenarios: a zero-dimensional model and a one-dimensional model. The results demonstrate the PINN’s proficiency in accurately identifying the parameters and solving for temperature fluctuations within the system with different input conditions. Furthermore, we compare the PINN with the Long Short-Term Memory (LSTM) method to predict the outlet temperature of the electrolysis. The PINN outperformed the LSTM method, highlighting its reliability and precision, achieving a Mean Squared Error (MSE) of 0.1596 compared to 1.2132 for LSTM models. The proposed method shows a high performance in dealing with sensor noises and avoids overfitting problems. This synergy of physics knowledge and data-driven learning opens new pathways towards real-time digital twins, enhanced predictive control, and improved reliability for PEM electrolysis and other complex, data-scarce energy systems.</div></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"20 ","pages":"Article 100474"},"PeriodicalIF":9.6000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546825000060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Proton Exchange Membrane (PEM) electrolysis stands as a cornerstone technology in the clean energy sector, driving the production of hydrogen and oxygen from water. A critical aspect of ensuring the efficiency and safety of this process lies in the precise monitoring and control of temperature at the electrolysis outlet. However, accurately characterizing temperature changes within the PEM electrolysis system can be challenging due to the fluctuation of renewable energies. This study introduces an approach integrating data with fundamental physics principles known as Physics-Informed Neural Networks (PINNs). This method solves differential equations and estimates the unknown parameters governing the temperature dynamics within the PEM electrolysis system. We consider two distinct scenarios: a zero-dimensional model and a one-dimensional model. The results demonstrate the PINN’s proficiency in accurately identifying the parameters and solving for temperature fluctuations within the system with different input conditions. Furthermore, we compare the PINN with the Long Short-Term Memory (LSTM) method to predict the outlet temperature of the electrolysis. The PINN outperformed the LSTM method, highlighting its reliability and precision, achieving a Mean Squared Error (MSE) of 0.1596 compared to 1.2132 for LSTM models. The proposed method shows a high performance in dealing with sensor noises and avoids overfitting problems. This synergy of physics knowledge and data-driven learning opens new pathways towards real-time digital twins, enhanced predictive control, and improved reliability for PEM electrolysis and other complex, data-scarce energy systems.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy and AI
Energy and AI Engineering-Engineering (miscellaneous)
CiteScore
16.50
自引率
0.00%
发文量
64
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信