Eccentricity curve estimation from geological data using sinusoidal modeling

IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Miroslav Zivanovic , Matthias Sinnesael
{"title":"Eccentricity curve estimation from geological data using sinusoidal modeling","authors":"Miroslav Zivanovic ,&nbsp;Matthias Sinnesael","doi":"10.1016/j.cageo.2025.105866","DOIUrl":null,"url":null,"abstract":"<div><div>The estimation of eccentricity curves from geological data is important as it can be used as a basis for the construction of geological timescales, or making inferences of past orbital evolutions of the Solar System. Such estimation can be challenging for multiple reasons like age-depth distortions, non-linear responses to insolation and various other sources of perturbation. We present a novel approach to estimating the eccentricity waveform from geological time series by targeted modifications to the Astronomical Component Estimation model (ACEv.1). We show that analyzing individual precession components is highly beneficial in understanding the impact of perturbation on the estimator. It turns out that individual precession components are fairly stationary in noise-free environments. Although the presence of perturbation modifies the morphology of the corresponding waveforms, the root-mean-square of individual waveforms remains approximately unchanged. This finding allows for a simple adjustment of individual precession components, that renders them almost noise-free. Such an approach provides a high-fidelity precession waveform, from which we can estimate the eccentricity. Furthermore, we provide a benchmark study on both synthetic and real geological data, which assess the performance of the proposed method against three state-of-the-art methods from the literature. The modified ACEv.1 model – here named ACEv.2 – outperforms the reference methods in terms of goodness-of-fit to the known eccentricity solutions in the case of a known age-depth model and precession frequencies. Cyclostratigraphic studies often lack comparisons to other methods; therefore, we believe this study could enhance users' understanding of how the reference methods handle perturbations in geological signals.</div></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"196 ","pages":"Article 105866"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300425000160","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The estimation of eccentricity curves from geological data is important as it can be used as a basis for the construction of geological timescales, or making inferences of past orbital evolutions of the Solar System. Such estimation can be challenging for multiple reasons like age-depth distortions, non-linear responses to insolation and various other sources of perturbation. We present a novel approach to estimating the eccentricity waveform from geological time series by targeted modifications to the Astronomical Component Estimation model (ACEv.1). We show that analyzing individual precession components is highly beneficial in understanding the impact of perturbation on the estimator. It turns out that individual precession components are fairly stationary in noise-free environments. Although the presence of perturbation modifies the morphology of the corresponding waveforms, the root-mean-square of individual waveforms remains approximately unchanged. This finding allows for a simple adjustment of individual precession components, that renders them almost noise-free. Such an approach provides a high-fidelity precession waveform, from which we can estimate the eccentricity. Furthermore, we provide a benchmark study on both synthetic and real geological data, which assess the performance of the proposed method against three state-of-the-art methods from the literature. The modified ACEv.1 model – here named ACEv.2 – outperforms the reference methods in terms of goodness-of-fit to the known eccentricity solutions in the case of a known age-depth model and precession frequencies. Cyclostratigraphic studies often lack comparisons to other methods; therefore, we believe this study could enhance users' understanding of how the reference methods handle perturbations in geological signals.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Geosciences
Computers & Geosciences 地学-地球科学综合
CiteScore
9.30
自引率
6.80%
发文量
164
审稿时长
3.4 months
期刊介绍: Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信