Unfolded von Willebrand factor binds protein S and reduces anticoagulant activity

Martha M. S. Sim , Molly Y. Mollica , Hammodah R. Alfar , Melissa Hollifield , Dominic W. Chung , Xiaoyun Fu , Siva Gandhapudi , Daniëlle M. Coenen , Kanakanagavalli Shravani Prakhya , Dlovan F. D Mahmood , Meenakshi Banerjee , Chi Peng , Xian Li , Alice C. Thornton , James Z. Porterfield , Jamie L. Sturgill , Gail A. Sievert , Marietta Barton-Baxter , Ze Zheng , Kenneth S. Campbell , Jeremy P. Wood
{"title":"Unfolded von Willebrand factor binds protein S and reduces anticoagulant activity","authors":"Martha M. S. Sim ,&nbsp;Molly Y. Mollica ,&nbsp;Hammodah R. Alfar ,&nbsp;Melissa Hollifield ,&nbsp;Dominic W. Chung ,&nbsp;Xiaoyun Fu ,&nbsp;Siva Gandhapudi ,&nbsp;Daniëlle M. Coenen ,&nbsp;Kanakanagavalli Shravani Prakhya ,&nbsp;Dlovan F. D Mahmood ,&nbsp;Meenakshi Banerjee ,&nbsp;Chi Peng ,&nbsp;Xian Li ,&nbsp;Alice C. Thornton ,&nbsp;James Z. Porterfield ,&nbsp;Jamie L. Sturgill ,&nbsp;Gail A. Sievert ,&nbsp;Marietta Barton-Baxter ,&nbsp;Ze Zheng ,&nbsp;Kenneth S. Campbell ,&nbsp;Jeremy P. Wood","doi":"10.1016/j.bvth.2024.100030","DOIUrl":null,"url":null,"abstract":"<div><h3>Abstract</h3><div>The critical plasma anticoagulant protein S (PS) circulates in 2 functionally distinct pools: free (anticoagulant) or bound to complement component 4b-binding protein (C4BP; anti-inflammatory). Acquired free PS deficiency is detected in several viral infections, but its cause is unclear. Here, we used biochemical approaches and human patient plasma samples to identify an interaction between PS and von Willebrand factor (VWF), which causes free PS deficiency and reduced PS anticoagulant activity. We first identified a shear-dependent interaction between PS and VWF by mass spectrometry. Consistently, PS and VWF could be crosslinked together in plasma, and plasma PS and VWF comigrated in gel electrophoresis. The PS/VWF interaction was blocked by and tissue factor pathway inhibitor but not activated protein C, suggesting an interaction with the sex hormone binding globulin region of PS. Microfluidic systems demonstrated that PS stably binds VWF as VWF unfolds under turbulent flow. PS/VWF complexes also localized to platelet thrombi under laminar arterial flow. In thrombin generation–based assays, shearing plasma decreased PS activity, an effect not seen in the absence of VWF. Finally, free PS deficiency in patients with COVID-19 correlated with changes in VWF, but not C4BP, and with thrombin generation. Our data indicate that PS binds to a shear-exposed site on VWF, thus sequestering free PS and decreasing its anticoagulant activity, which would account for the increased thrombin generation potential. Because many viral infections present with free PS deficiency, elevated circulating VWF, and increased vascular shear, we propose that the PS/VWF interaction reported here is a likely contributor to virus-associated thrombotic risk.</div></div>","PeriodicalId":100190,"journal":{"name":"Blood Vessels, Thrombosis & Hemostasis","volume":"2 1","pages":"Article 100030"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood Vessels, Thrombosis & Hemostasis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950327224000305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The critical plasma anticoagulant protein S (PS) circulates in 2 functionally distinct pools: free (anticoagulant) or bound to complement component 4b-binding protein (C4BP; anti-inflammatory). Acquired free PS deficiency is detected in several viral infections, but its cause is unclear. Here, we used biochemical approaches and human patient plasma samples to identify an interaction between PS and von Willebrand factor (VWF), which causes free PS deficiency and reduced PS anticoagulant activity. We first identified a shear-dependent interaction between PS and VWF by mass spectrometry. Consistently, PS and VWF could be crosslinked together in plasma, and plasma PS and VWF comigrated in gel electrophoresis. The PS/VWF interaction was blocked by and tissue factor pathway inhibitor but not activated protein C, suggesting an interaction with the sex hormone binding globulin region of PS. Microfluidic systems demonstrated that PS stably binds VWF as VWF unfolds under turbulent flow. PS/VWF complexes also localized to platelet thrombi under laminar arterial flow. In thrombin generation–based assays, shearing plasma decreased PS activity, an effect not seen in the absence of VWF. Finally, free PS deficiency in patients with COVID-19 correlated with changes in VWF, but not C4BP, and with thrombin generation. Our data indicate that PS binds to a shear-exposed site on VWF, thus sequestering free PS and decreasing its anticoagulant activity, which would account for the increased thrombin generation potential. Because many viral infections present with free PS deficiency, elevated circulating VWF, and increased vascular shear, we propose that the PS/VWF interaction reported here is a likely contributor to virus-associated thrombotic risk.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信