{"title":"Boulder transport under mixed-lubrication friction","authors":"J. DuBerry-Mahon , J.G. Herterich","doi":"10.1016/j.euromechflu.2025.01.001","DOIUrl":null,"url":null,"abstract":"<div><div>Boulder transport by wave action may exploit thin gaps between the boulder and bedrock platform whereby a lubrication zone reduces the friction coefficient during sliding. We derive an effective mixed-lubrication friction coefficient, depending on boulder speed and the geometry of the lubricated region, and analyse its effect on boulder transport. Mixed lubrication enhances boulder dynamics when moving at a faster speed, the lubricated region is increased, or with fewer separated lubricated regions and smaller boulder aspect ratios. We compare our model against static friction and an empirically-fitted model.</div></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"111 ","pages":"Pages 120-126"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997754625000019","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Boulder transport by wave action may exploit thin gaps between the boulder and bedrock platform whereby a lubrication zone reduces the friction coefficient during sliding. We derive an effective mixed-lubrication friction coefficient, depending on boulder speed and the geometry of the lubricated region, and analyse its effect on boulder transport. Mixed lubrication enhances boulder dynamics when moving at a faster speed, the lubricated region is increased, or with fewer separated lubricated regions and smaller boulder aspect ratios. We compare our model against static friction and an empirically-fitted model.
期刊介绍:
The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.