Investigation of turbulent high-speed flow over the double wedge at varying aft-wedge deflections

IF 2.5 3区 工程技术 Q2 MECHANICS
Anurag Adityanarayan Ray , Ashoke De
{"title":"Investigation of turbulent high-speed flow over the double wedge at varying aft-wedge deflections","authors":"Anurag Adityanarayan Ray ,&nbsp;Ashoke De","doi":"10.1016/j.euromechflu.2024.11.012","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines the shock–shock (SSI) and shock-wave boundary layer (SBLI) interaction mechanisms over the two-dimensional double wedge exposed to hypersonic Mach 5 flow. Several Unsteady Reynolds-averaged Navier Stokes (URANS) based turbulence models are used systematically to determine the most suitable model. Grid sensitivity analysis indicates that while the laminar model is sensitive to grid size, turbulent models exhibit grid independence, suggesting the laminar model’s unsuitability under these conditions. We further support this hypothesis by a qualitative and quantitative comparison of the numerical schlieren images and mean wall heat flux profiles, respectively, with the experimental results. The average heat flux based on the fully laminar assumption provides accurate predictions in the well-attached flow region, but it fails horribly after the SBLI interaction. The models using the standard <span><math><mrow><mi>k</mi><mo>−</mo><mi>ω</mi></mrow></math></span> SST (shear stress transport) turbulence model and the four-equation Lantry–Menter correlation-based model consistently overpredict the wall heat transfer rate throughout the double-wedge surface. The newly employed Krause correlations significantly improve the match with the qualitative and quantitative experimental observations. This article further uses this novel turbulence model to explore the impact of the aft-wedge angle variation (<span><math><mrow><mn>4</mn><msup><mrow><mn>5</mn></mrow><mrow><mn>0</mn></mrow></msup><mo>≤</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≤</mo><mn>6</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>0</mn></mrow></msup></mrow></math></span>) on the shock–shock interaction mechanisms and the associated wall properties. Results indicate a weak Edney type-V interaction at the lowest angle, transitioning to Edney type-V with Mach reflection for <span><math><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>≥</mo><mn>5</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>0</mn></mrow></msup></mrow></math></span>. Hence, the critical transition aft-wedge angle concerning the change in the shock interference pattern is between <span><math><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>4</mn><msup><mrow><mn>5</mn></mrow><mrow><mn>0</mn></mrow></msup></mrow></math></span> and <span><math><mrow><msub><mrow><mi>θ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><mn>5</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>0</mn></mrow></msup></mrow></math></span>.</div></div>","PeriodicalId":11985,"journal":{"name":"European Journal of Mechanics B-fluids","volume":"111 ","pages":"Pages 20-41"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics B-fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997754624001663","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines the shock–shock (SSI) and shock-wave boundary layer (SBLI) interaction mechanisms over the two-dimensional double wedge exposed to hypersonic Mach 5 flow. Several Unsteady Reynolds-averaged Navier Stokes (URANS) based turbulence models are used systematically to determine the most suitable model. Grid sensitivity analysis indicates that while the laminar model is sensitive to grid size, turbulent models exhibit grid independence, suggesting the laminar model’s unsuitability under these conditions. We further support this hypothesis by a qualitative and quantitative comparison of the numerical schlieren images and mean wall heat flux profiles, respectively, with the experimental results. The average heat flux based on the fully laminar assumption provides accurate predictions in the well-attached flow region, but it fails horribly after the SBLI interaction. The models using the standard kω SST (shear stress transport) turbulence model and the four-equation Lantry–Menter correlation-based model consistently overpredict the wall heat transfer rate throughout the double-wedge surface. The newly employed Krause correlations significantly improve the match with the qualitative and quantitative experimental observations. This article further uses this novel turbulence model to explore the impact of the aft-wedge angle variation (450θ2600) on the shock–shock interaction mechanisms and the associated wall properties. Results indicate a weak Edney type-V interaction at the lowest angle, transitioning to Edney type-V with Mach reflection for θ2500. Hence, the critical transition aft-wedge angle concerning the change in the shock interference pattern is between θ2=450 and θ2=500.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
3.80%
发文量
127
审稿时长
58 days
期刊介绍: The European Journal of Mechanics - B/Fluids publishes papers in all fields of fluid mechanics. Although investigations in well-established areas are within the scope of the journal, recent developments and innovative ideas are particularly welcome. Theoretical, computational and experimental papers are equally welcome. Mathematical methods, be they deterministic or stochastic, analytical or numerical, will be accepted provided they serve to clarify some identifiable problems in fluid mechanics, and provided the significance of results is explained. Similarly, experimental papers must add physical insight in to the understanding of fluid mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信