{"title":"Evaluating longshore sediment transport: A comparison between empirical formulas and XBeach 2DH numerical model","authors":"Samanta Buttò , Carla Lucia Faraci , Marta Corradino , Claudio Iuppa , Emanuele Colica , Fabrizio Pepe","doi":"10.1016/j.margeo.2024.107471","DOIUrl":null,"url":null,"abstract":"<div><div>Longshore sediment transport (LST) is a crucial process shaping coastal environments. As multiple site-specific factors (e.g. wave height, coastal topography) influence the LST, an accurate estimation of LST rate represents a scientific challenge.</div><div>This research evaluates the predictive capacity of three widely used empirical formulas (<span><span>CERC, 1984</span></span>; <span><span>Kamphuis, 1991</span></span>; <span><span>Van Rijn, 2014</span></span>) and the XBeach 2DH numerical model for estimating the LST rate by comparing the obtained results with field LST data.</div><div>We chose three coastal sites in Malta Island (Għadira Bay, GB) and northern Sicily (Cefalù, CF, and Campofelice di Roccella, CR) based on different sediment grain size, coastal type (open or embayed) and morpho-bathymetry.</div><div>For each site, we analysed wave parameters, grain size of the beach and seabed sediments, coastal morphology, and marine vegetation distribution. Furthermore, we used field measurements to calibrate the numerical model's sediment transport and morphological parameters.</div><div>The calibrated numerical model provides greater accuracy in LST rate estimation than the empirical formulas. The latter overestimates the LST rates by factors ranging from 435 to 7885, whereas the numerical model overestimates by factors of 1.8 and 1.9 at the CF site and GB, respectively, and underestimates by a factor of 0.5 at the CR site.</div><div>The good performance of the numerical model is due to its consideration of site-specific factors. The parameter values for the model calibration can be used successfully in embayed fine/coarse sandy beaches. Moreover, the numerical model, tested so far only for sandy beaches, also works well on gravelly beaches.</div></div>","PeriodicalId":18229,"journal":{"name":"Marine Geology","volume":"480 ","pages":"Article 107471"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002532272400255X","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Longshore sediment transport (LST) is a crucial process shaping coastal environments. As multiple site-specific factors (e.g. wave height, coastal topography) influence the LST, an accurate estimation of LST rate represents a scientific challenge.
This research evaluates the predictive capacity of three widely used empirical formulas (CERC, 1984; Kamphuis, 1991; Van Rijn, 2014) and the XBeach 2DH numerical model for estimating the LST rate by comparing the obtained results with field LST data.
We chose three coastal sites in Malta Island (Għadira Bay, GB) and northern Sicily (Cefalù, CF, and Campofelice di Roccella, CR) based on different sediment grain size, coastal type (open or embayed) and morpho-bathymetry.
For each site, we analysed wave parameters, grain size of the beach and seabed sediments, coastal morphology, and marine vegetation distribution. Furthermore, we used field measurements to calibrate the numerical model's sediment transport and morphological parameters.
The calibrated numerical model provides greater accuracy in LST rate estimation than the empirical formulas. The latter overestimates the LST rates by factors ranging from 435 to 7885, whereas the numerical model overestimates by factors of 1.8 and 1.9 at the CF site and GB, respectively, and underestimates by a factor of 0.5 at the CR site.
The good performance of the numerical model is due to its consideration of site-specific factors. The parameter values for the model calibration can be used successfully in embayed fine/coarse sandy beaches. Moreover, the numerical model, tested so far only for sandy beaches, also works well on gravelly beaches.
期刊介绍:
Marine Geology is the premier international journal on marine geological processes in the broadest sense. We seek papers that are comprehensive, interdisciplinary and synthetic that will be lasting contributions to the field. Although most papers are based on regional studies, they must demonstrate new findings of international significance. We accept papers on subjects as diverse as seafloor hydrothermal systems, beach dynamics, early diagenesis, microbiological studies in sediments, palaeoclimate studies and geophysical studies of the seabed. We encourage papers that address emerging new fields, for example the influence of anthropogenic processes on coastal/marine geology and coastal/marine geoarchaeology. We insist that the papers are concerned with the marine realm and that they deal with geology: with rocks, sediments, and physical and chemical processes affecting them. Papers should address scientific hypotheses: highly descriptive data compilations or papers that deal only with marine management and risk assessment should be submitted to other journals. Papers on laboratory or modelling studies must demonstrate direct relevance to marine processes or deposits. The primary criteria for acceptance of papers is that the science is of high quality, novel, significant, and of broad international interest.