{"title":"Efficient image inpainting of microresistivity logs: A DDPM-based pseudo-labeling approach with FPEM-GAN","authors":"Zhaoyan Zhong, Liguo Niu, Xintao Mu, Xin Wang","doi":"10.1016/j.cageo.2024.105812","DOIUrl":null,"url":null,"abstract":"<div><div>In geophysical exploration, logging images are frequently incomplete due to the mismatch between the size of the logging instruments and that of the boreholes, which significantly impacts geological analysis. Existing methods, which rely on standard algorithms or unsupervised learning techniques, tend to be computationally intensive and time-consuming. In addition, they are difficult to inpaint regions with high-angle fractures or fine-grained textures. To address these challenges, we propose a deep learning approach for inpainting stratigraphic features. Our method utilizes pseudo-labeled training datasets to alleviate the issue of limited training labels, thereby reducing both computational cost and processing time. We introduce a Fusion-Perspective-Enhancement Module (FPEM) designed to accurately infer missing regions based on contextual guidance, thus enhancing the inpainting process for high-angle fractures. Furthermore, we present a novel discriminator known as SM-Unet, which improves fine-grained textures by adjusting the weight assigned to various regions through soft labeling during training. Our approach achieves a Peak Signal-to-Noise Ratio (PSNR) of 25.35 and a Structural Similarity Index (SSIM) of 0.901 on the logging image dataset. This performance surpasses that of state-of-the-art methods — particularly in managing high-angle fractures and fine-grained textures — while requiring less computational effort.</div></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"196 ","pages":"Article 105812"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300424002954","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In geophysical exploration, logging images are frequently incomplete due to the mismatch between the size of the logging instruments and that of the boreholes, which significantly impacts geological analysis. Existing methods, which rely on standard algorithms or unsupervised learning techniques, tend to be computationally intensive and time-consuming. In addition, they are difficult to inpaint regions with high-angle fractures or fine-grained textures. To address these challenges, we propose a deep learning approach for inpainting stratigraphic features. Our method utilizes pseudo-labeled training datasets to alleviate the issue of limited training labels, thereby reducing both computational cost and processing time. We introduce a Fusion-Perspective-Enhancement Module (FPEM) designed to accurately infer missing regions based on contextual guidance, thus enhancing the inpainting process for high-angle fractures. Furthermore, we present a novel discriminator known as SM-Unet, which improves fine-grained textures by adjusting the weight assigned to various regions through soft labeling during training. Our approach achieves a Peak Signal-to-Noise Ratio (PSNR) of 25.35 and a Structural Similarity Index (SSIM) of 0.901 on the logging image dataset. This performance surpasses that of state-of-the-art methods — particularly in managing high-angle fractures and fine-grained textures — while requiring less computational effort.
期刊介绍:
Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.