Improving generalization through self-supervised learning using generative pre-training transformer for natural gas segmentation

IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Luiz Fernando Trindade Santos , Marcelo Gattass , Carlos Rodriguez , Jan Hurtado , Frederico Miranda , Diogo Michelon , Roberto Ribeiro
{"title":"Improving generalization through self-supervised learning using generative pre-training transformer for natural gas segmentation","authors":"Luiz Fernando Trindade Santos ,&nbsp;Marcelo Gattass ,&nbsp;Carlos Rodriguez ,&nbsp;Jan Hurtado ,&nbsp;Frederico Miranda ,&nbsp;Diogo Michelon ,&nbsp;Roberto Ribeiro","doi":"10.1016/j.cageo.2024.105809","DOIUrl":null,"url":null,"abstract":"<div><div>Seismic reflection is an essential geophysical method for subsurface mapping in the oil and gas industry, used to deduce the position and extension of potential gas accumulations through the processing and interpretation of data. However, interpreting seismic reflection data presents inherent ambiguity, as similar signatures may arise from geological scenarios with distinct physical properties. Furthermore, seismic interpretation is costly and labor-intensive, complicating the generation of extensive labeled datasets useful for conventional AI-assisted solutions. The emergence of self-supervised learning techniques has gained significant attention in the AI community, enabling the pre-training of deep neural networks without annotated data. This paper proposes a two-stage method for segmenting natural gas regions in seismic reflection images by using a generative pre-training transformer model for feature extraction and a recurrent neural network for per-seismic trace analysis. In the first stage, we pre-train the feature extractor in a self-supervised fashion under a seismic image reconstruction task. In the second stage, using the pre-trained feature extractor, we train the recurrent neural network for the segmentation of natural gas accumulations in 1D seismic image traces. We conducted quantitative and qualitative experiments on a private dataset to demonstrate how our self-supervised learning methodology helps achieve better gains in model generalization. The increase, which can reach up to 20%, in the F1-Score metric corroborates the latter. Thus, an improvement in generalization corresponds to an increase in success rates in drilling new wells.</div></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"196 ","pages":"Article 105809"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300424002929","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Seismic reflection is an essential geophysical method for subsurface mapping in the oil and gas industry, used to deduce the position and extension of potential gas accumulations through the processing and interpretation of data. However, interpreting seismic reflection data presents inherent ambiguity, as similar signatures may arise from geological scenarios with distinct physical properties. Furthermore, seismic interpretation is costly and labor-intensive, complicating the generation of extensive labeled datasets useful for conventional AI-assisted solutions. The emergence of self-supervised learning techniques has gained significant attention in the AI community, enabling the pre-training of deep neural networks without annotated data. This paper proposes a two-stage method for segmenting natural gas regions in seismic reflection images by using a generative pre-training transformer model for feature extraction and a recurrent neural network for per-seismic trace analysis. In the first stage, we pre-train the feature extractor in a self-supervised fashion under a seismic image reconstruction task. In the second stage, using the pre-trained feature extractor, we train the recurrent neural network for the segmentation of natural gas accumulations in 1D seismic image traces. We conducted quantitative and qualitative experiments on a private dataset to demonstrate how our self-supervised learning methodology helps achieve better gains in model generalization. The increase, which can reach up to 20%, in the F1-Score metric corroborates the latter. Thus, an improvement in generalization corresponds to an increase in success rates in drilling new wells.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Geosciences
Computers & Geosciences 地学-地球科学综合
CiteScore
9.30
自引率
6.80%
发文量
164
审稿时长
3.4 months
期刊介绍: Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信