Improved modelling of fluid production and reinjection in geothermal reservoirs

IF 4.2 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Adrian Croucher, John O’Sullivan, Michael O’Sullivan
{"title":"Improved modelling of fluid production and reinjection in geothermal reservoirs","authors":"Adrian Croucher,&nbsp;John O’Sullivan,&nbsp;Michael O’Sullivan","doi":"10.1016/j.cageo.2024.105822","DOIUrl":null,"url":null,"abstract":"<div><div>Models of geothermal reservoirs used for power generation need to simulate the production of multiphase fluid via a complex network of sources, as well as the reinjection of some of this fluid back into the system. The use of standard numerical methods to model such systems with interacting sources typically gives poor non-linear solver convergence and impractical limitations on time-step sizes. However, these issues can be overcome by modifying the Jacobian matrix used in the non-linear equation solution, adding extra terms to represent the interactions between sources. This approach has been incorporated into the Waiwera parallel, open-source geothermal flow simulator. The improved performance offered by this method is demonstrated through test problems and a real geothermal reservoir model.</div></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"196 ","pages":"Article 105822"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300424003054","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Models of geothermal reservoirs used for power generation need to simulate the production of multiphase fluid via a complex network of sources, as well as the reinjection of some of this fluid back into the system. The use of standard numerical methods to model such systems with interacting sources typically gives poor non-linear solver convergence and impractical limitations on time-step sizes. However, these issues can be overcome by modifying the Jacobian matrix used in the non-linear equation solution, adding extra terms to represent the interactions between sources. This approach has been incorporated into the Waiwera parallel, open-source geothermal flow simulator. The improved performance offered by this method is demonstrated through test problems and a real geothermal reservoir model.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Geosciences
Computers & Geosciences 地学-地球科学综合
CiteScore
9.30
自引率
6.80%
发文量
164
审稿时长
3.4 months
期刊介绍: Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信