New watershed methods for isolating and characterizing discrete objects in 3D data sets

Richard A. Ketcham
{"title":"New watershed methods for isolating and characterizing discrete objects in 3D data sets","authors":"Richard A. Ketcham","doi":"10.1016/j.tmater.2024.100043","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces new algorithms for conducting and improving watershed analysis, implemented with the particular goal of improving the ability to measure the shapes of mineral grains to be subsequently be analyzed by mass spectrometry. This application requires a high degree of accuracy and fidelity in terms of both separating all touching grains and preserving their shapes. The algorithms are designed to take advantage of a vector-based programming environment. A new implementation of the Euclidean distance transform utilizes the fact that the distance from any adjacent pair of voxels to the nearest boundary must be within one voxel of each other. In practice, however, this algorithm is outperformed by a smoothed approximate distance transform that is faster to compute and results in less irregular watershed boundaries. A one-pass rainfall-based watershed algorithm is introduced that runs in linear time with the number of segmented voxels, and requires no priority queue. Unlike marker-based watershed algorithms based on the basin-filling approach, the rainfall approach finds watersheds associated with all local maxima in the distance map, even if a marking algorithm is used. A post-watershed smoothing algorithm improves watershed boundaries and eliminates small spurious watersheds. The one-pass watershed and post-watershed smoothing algorithms run in times superior or comparable to basin-fill watershed algorithms implemented in other environments, and offers excellent ability to separate touching objects efficiently while placing watershed boundaries that maximize the preservation of details of particle shape. Further time improvement could come from implementing them in a vector-based environment that allows explicit multi-threading.</div></div>","PeriodicalId":101254,"journal":{"name":"Tomography of Materials and Structures","volume":"7 ","pages":"Article 100043"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography of Materials and Structures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949673X24000202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces new algorithms for conducting and improving watershed analysis, implemented with the particular goal of improving the ability to measure the shapes of mineral grains to be subsequently be analyzed by mass spectrometry. This application requires a high degree of accuracy and fidelity in terms of both separating all touching grains and preserving their shapes. The algorithms are designed to take advantage of a vector-based programming environment. A new implementation of the Euclidean distance transform utilizes the fact that the distance from any adjacent pair of voxels to the nearest boundary must be within one voxel of each other. In practice, however, this algorithm is outperformed by a smoothed approximate distance transform that is faster to compute and results in less irregular watershed boundaries. A one-pass rainfall-based watershed algorithm is introduced that runs in linear time with the number of segmented voxels, and requires no priority queue. Unlike marker-based watershed algorithms based on the basin-filling approach, the rainfall approach finds watersheds associated with all local maxima in the distance map, even if a marking algorithm is used. A post-watershed smoothing algorithm improves watershed boundaries and eliminates small spurious watersheds. The one-pass watershed and post-watershed smoothing algorithms run in times superior or comparable to basin-fill watershed algorithms implemented in other environments, and offers excellent ability to separate touching objects efficiently while placing watershed boundaries that maximize the preservation of details of particle shape. Further time improvement could come from implementing them in a vector-based environment that allows explicit multi-threading.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信