{"title":"APOTHEOSIS: An efficient approximate similarity search system","authors":"Daniel Huici, Ricardo J. Rodríguez, Eduardo Mena","doi":"10.1016/j.softx.2024.102016","DOIUrl":null,"url":null,"abstract":"<div><div><span>APOTHEOSIS</span> is a tool for efficiently identifying and comparing data similarity in large datasets, addressing challenges faced by traditional methods such as scalability and speed. <span>APOTHEOSIS</span> overcomes them by combining advanced algorithms and data structures, enabling fast and accurate similarity analysis. Specifically, it uses a custom hierarchical small navigation world as an approximate <span><math><mi>K</mi></math></span>-nearest neighbors search method, and approximate similarity digests algorithms to find common features between similar data items, also supporting various distance metrics beyond vector-based approaches. Our software tool is designed for seamless integration into research workflows, improving reproducibility and facilitating the comparison of large-scale, high-dimensional data comparison across multiple domains.</div></div>","PeriodicalId":21905,"journal":{"name":"SoftwareX","volume":"29 ","pages":"Article 102016"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SoftwareX","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352711024003868","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
APOTHEOSIS is a tool for efficiently identifying and comparing data similarity in large datasets, addressing challenges faced by traditional methods such as scalability and speed. APOTHEOSIS overcomes them by combining advanced algorithms and data structures, enabling fast and accurate similarity analysis. Specifically, it uses a custom hierarchical small navigation world as an approximate -nearest neighbors search method, and approximate similarity digests algorithms to find common features between similar data items, also supporting various distance metrics beyond vector-based approaches. Our software tool is designed for seamless integration into research workflows, improving reproducibility and facilitating the comparison of large-scale, high-dimensional data comparison across multiple domains.
期刊介绍:
SoftwareX aims to acknowledge the impact of software on today''s research practice, and on new scientific discoveries in almost all research domains. SoftwareX also aims to stress the importance of the software developers who are, in part, responsible for this impact. To this end, SoftwareX aims to support publication of research software in such a way that: The software is given a stamp of scientific relevance, and provided with a peer-reviewed recognition of scientific impact; The software developers are given the credits they deserve; The software is citable, allowing traditional metrics of scientific excellence to apply; The academic career paths of software developers are supported rather than hindered; The software is publicly available for inspection, validation, and re-use. Above all, SoftwareX aims to inform researchers about software applications, tools and libraries with a (proven) potential to impact the process of scientific discovery in various domains. The journal is multidisciplinary and accepts submissions from within and across subject domains such as those represented within the broad thematic areas below: Mathematical and Physical Sciences; Environmental Sciences; Medical and Biological Sciences; Humanities, Arts and Social Sciences. Originating from these broad thematic areas, the journal also welcomes submissions of software that works in cross cutting thematic areas, such as citizen science, cybersecurity, digital economy, energy, global resource stewardship, health and wellbeing, etcetera. SoftwareX specifically aims to accept submissions representing domain-independent software that may impact more than one research domain.