Development of AI crack segmentation models for additive manufacturing

Tebogo Ledwaba , Christine Steenkamp , Agnieszka Chmielewska-Wysocka , Bartlomiej Wysocki , Anton du Plessis
{"title":"Development of AI crack segmentation models for additive manufacturing","authors":"Tebogo Ledwaba ,&nbsp;Christine Steenkamp ,&nbsp;Agnieszka Chmielewska-Wysocka ,&nbsp;Bartlomiej Wysocki ,&nbsp;Anton du Plessis","doi":"10.1016/j.tmater.2025.100053","DOIUrl":null,"url":null,"abstract":"<div><div>The use of X-ray computed tomography (XCT) has seen significant growth over a broad range of disciplines including biology, earth science, engineering, and many more. It is now increasingly used in additive manufacturing (AM) since its benefits are being appreciated more widely. This is due to the method being non-destructive and comprehensive, providing external and internal information of tested parts. Data processing and segmentation of XCT data is important to get as much information as possible so that a clear picture of features can be obtained and analyzed. Porosity analysis has been the most successful and widely used XCT analysis type in all fields so far, partly due to simple manual segmentation methods such as the Otsu global threshold. However, segmentation of small and narrow features such as cracks are challenging with conventional thresholding methods. Since automated conventional methods fail, manual segmentation is often used but this can be subjective, tedious, and prone to segmentation errors. The present work employs neural networks, specifically the U-Net architecture and thoroughly investigates possible solutions to a robust crack segmentation model. Intensity scale calibration, bias training weights and data augmentations were investigated in detail to find the best possible performance of trained models, when employed on new data. The results demonstrate the performance and improvement gained by each of the above factors, as well as the successful AI segmentation for various additively manufactured sample types with different cracks. This method enables clear visualization and presentation of cracks, as well as their quantification. The model strives toward a generic crack segmentation model for all AM parts that could be used directly by others. This generalizability of the model is discussed together with its limitations.</div></div>","PeriodicalId":101254,"journal":{"name":"Tomography of Materials and Structures","volume":"7 ","pages":"Article 100053"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tomography of Materials and Structures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949673X25000063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The use of X-ray computed tomography (XCT) has seen significant growth over a broad range of disciplines including biology, earth science, engineering, and many more. It is now increasingly used in additive manufacturing (AM) since its benefits are being appreciated more widely. This is due to the method being non-destructive and comprehensive, providing external and internal information of tested parts. Data processing and segmentation of XCT data is important to get as much information as possible so that a clear picture of features can be obtained and analyzed. Porosity analysis has been the most successful and widely used XCT analysis type in all fields so far, partly due to simple manual segmentation methods such as the Otsu global threshold. However, segmentation of small and narrow features such as cracks are challenging with conventional thresholding methods. Since automated conventional methods fail, manual segmentation is often used but this can be subjective, tedious, and prone to segmentation errors. The present work employs neural networks, specifically the U-Net architecture and thoroughly investigates possible solutions to a robust crack segmentation model. Intensity scale calibration, bias training weights and data augmentations were investigated in detail to find the best possible performance of trained models, when employed on new data. The results demonstrate the performance and improvement gained by each of the above factors, as well as the successful AI segmentation for various additively manufactured sample types with different cracks. This method enables clear visualization and presentation of cracks, as well as their quantification. The model strives toward a generic crack segmentation model for all AM parts that could be used directly by others. This generalizability of the model is discussed together with its limitations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信