Sample size for saturation in qualitative research: Debates, definitions, and strategies

Sirwan Khalid Ahmed
{"title":"Sample size for saturation in qualitative research: Debates, definitions, and strategies","authors":"Sirwan Khalid Ahmed","doi":"10.1016/j.glmedi.2024.100171","DOIUrl":null,"url":null,"abstract":"<div><div>Data saturation is a cornerstone concept in qualitative research, ensuring that data collection ceases once no new themes, insights, or patterns emerge. This concept is critical for achieving methodological rigor, as saturation enhances the credibility and completeness of research findings. Despite its central role, debates persist regarding the point at which saturation is achieved, especially as it varies across qualitative methodologies such as grounded theory, phenomenology, and ethnography. Contemporary scholars argue for a flexible approach to sample sizes and saturation criteria, balancing comprehensive data gathering with respect for emerging themes and contextual sensitivity. This article explores the theoretical foundations, practical applications, and controversies surrounding data saturation. Additionally, it offers recommendations for researchers on determining sample sizes and 16-ietms checklist for achieving saturation, aiming to improve research quality while addressing the methodological challenges inherent in qualitative research.</div></div>","PeriodicalId":100804,"journal":{"name":"Journal of Medicine, Surgery, and Public Health","volume":"5 ","pages":"Article 100171"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicine, Surgery, and Public Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949916X24001245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data saturation is a cornerstone concept in qualitative research, ensuring that data collection ceases once no new themes, insights, or patterns emerge. This concept is critical for achieving methodological rigor, as saturation enhances the credibility and completeness of research findings. Despite its central role, debates persist regarding the point at which saturation is achieved, especially as it varies across qualitative methodologies such as grounded theory, phenomenology, and ethnography. Contemporary scholars argue for a flexible approach to sample sizes and saturation criteria, balancing comprehensive data gathering with respect for emerging themes and contextual sensitivity. This article explores the theoretical foundations, practical applications, and controversies surrounding data saturation. Additionally, it offers recommendations for researchers on determining sample sizes and 16-ietms checklist for achieving saturation, aiming to improve research quality while addressing the methodological challenges inherent in qualitative research.
定性研究中饱和的样本量:争论、定义和策略
数据饱和是定性研究中的一个基础概念,它确保一旦没有新的主题、见解或模式出现,数据收集就会停止。这个概念对于实现方法的严谨性是至关重要的,因为饱和提高了研究结果的可信度和完整性。尽管它具有核心作用,但关于达到饱和的点的争论仍然存在,特别是当它在定性方法(如基础理论、现象学和民族志)中有所不同时。当代学者主张对样本量和饱和度标准采取灵活的方法,平衡综合数据收集与新兴主题和上下文敏感性的关系。本文探讨了有关数据饱和的理论基础、实际应用和争议。此外,它还为研究人员提供了确定样本量和达到饱和的16项清单的建议,旨在提高研究质量,同时解决定性研究中固有的方法论挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信