Jingyu Cui , Xiang Zhu , Lanlan Xiao , Zuchao Zhu , Renyong Lin , Xiao Hu , Yuzhen Jin
{"title":"Dynamics of a long flexible filament conveyed in the near field of a turbulent jet","authors":"Jingyu Cui , Xiang Zhu , Lanlan Xiao , Zuchao Zhu , Renyong Lin , Xiao Hu , Yuzhen Jin","doi":"10.1016/j.jfluidstructs.2024.104261","DOIUrl":null,"url":null,"abstract":"<div><div>This study numerically investigates the conveyance of a long flexible filament in the near field of a jet flow using the immersed boundary-lattice Boltzmann method (IB-LBM) and large eddy simulations (LES). The filament is introduced into the jet flow field from an external domain, delivered by a turbulent jet at a Reynolds number of 4500. This research analyzes the filament's dynamics and morphological evolutions, highlighting the effects of bending stiffness (<em>K<sub>b</sub>*</em>), linear density (<em>m<sub>f</sub>*</em>), and initial velocity (<em>U</em><sub>0</sub><em>*</em>) on conveyance stability. Initially, the filament exhibits stable forward motion with minimal fluctuations in the jet's potential core region. However, as the filament's leading section enters the developing region, a bulging shape forms in the middle section, leading to instability and morphological fluctuations. Increasing <em>m<sub>f</sub>*</em> and <em>U</em><sub>0</sub><em>*</em> enhance conveyance stability by delaying the bulging formation in the middle section and reducing morphological fluctuations. The leading section of the filament experiences the most significant fluctuations, suggesting that inertia effects dominate upstream. Varying <em>K<sub>b</sub>*</em> primary affects the filament's behavior post-instability while does not significantly impact the position of instability onset. Additionally, when <em>U</em><sub>0</sub><em>*</em> is less than half of the inlet airflow speed, the morphological fluctuations are significantly amplified. To improve conveyance stability for long filaments under similar conditions, it is recommended to accelerate the filament to at least half of the inlet jet velocity. These findings provide insights into optimizing long filament conveyance in industrial processes and biomedical applications, where precise control of filament behavior is crucial.</div></div>","PeriodicalId":54834,"journal":{"name":"Journal of Fluids and Structures","volume":"133 ","pages":"Article 104261"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0889974624001956","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study numerically investigates the conveyance of a long flexible filament in the near field of a jet flow using the immersed boundary-lattice Boltzmann method (IB-LBM) and large eddy simulations (LES). The filament is introduced into the jet flow field from an external domain, delivered by a turbulent jet at a Reynolds number of 4500. This research analyzes the filament's dynamics and morphological evolutions, highlighting the effects of bending stiffness (Kb*), linear density (mf*), and initial velocity (U0*) on conveyance stability. Initially, the filament exhibits stable forward motion with minimal fluctuations in the jet's potential core region. However, as the filament's leading section enters the developing region, a bulging shape forms in the middle section, leading to instability and morphological fluctuations. Increasing mf* and U0* enhance conveyance stability by delaying the bulging formation in the middle section and reducing morphological fluctuations. The leading section of the filament experiences the most significant fluctuations, suggesting that inertia effects dominate upstream. Varying Kb* primary affects the filament's behavior post-instability while does not significantly impact the position of instability onset. Additionally, when U0* is less than half of the inlet airflow speed, the morphological fluctuations are significantly amplified. To improve conveyance stability for long filaments under similar conditions, it is recommended to accelerate the filament to at least half of the inlet jet velocity. These findings provide insights into optimizing long filament conveyance in industrial processes and biomedical applications, where precise control of filament behavior is crucial.
期刊介绍:
The Journal of Fluids and Structures serves as a focal point and a forum for the exchange of ideas, for the many kinds of specialists and practitioners concerned with fluid–structure interactions and the dynamics of systems related thereto, in any field. One of its aims is to foster the cross–fertilization of ideas, methods and techniques in the various disciplines involved.
The journal publishes papers that present original and significant contributions on all aspects of the mechanical interactions between fluids and solids, regardless of scale.