{"title":"Error-reduced digital elevation models and high-resolution land cover roughness in mapping tsunami exposure for low elevation coastal zones","authors":"Rajuli Amra , Susumu Araki , Christian Geiß , Gareth Davies","doi":"10.1016/j.rsase.2024.101438","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a systematic exposure assessment by reconstructing the impact of the 2004 Indian Ocean Tsunami using a wide range of inundation scenarios and multiresolution exposure layers. To develop inundation and exposure models, we employed the error-reduced global digital elevation models (DEMs) and geospatially consistent multiresolution datasets: land cover roughness (LCR) models, built-up areas, and gridded population layers. We implemented three sequential validation assessments to evaluate the performance of inundation models, incorporating satellite observations, post-tsunami measurements, and the confidence level associated with inherent DEM error characteristics. The results demonstrated that the error-reduced variants of Copernicus DEM (i.e., FABDEM and DiluviumDEM) satisfied all reliability criteria. Incorporating these elevation models with LCR models improved the accuracy of inundation depth estimates; however, it reduced the agreement between simulated and observed inundation extents. We observed that applying high-resolution LCR models had a minimal impact on overland inundation extents but still influenced the exposure assessment, especially in high-density urban areas.</div></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"37 ","pages":"Article 101438"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524003021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a systematic exposure assessment by reconstructing the impact of the 2004 Indian Ocean Tsunami using a wide range of inundation scenarios and multiresolution exposure layers. To develop inundation and exposure models, we employed the error-reduced global digital elevation models (DEMs) and geospatially consistent multiresolution datasets: land cover roughness (LCR) models, built-up areas, and gridded population layers. We implemented three sequential validation assessments to evaluate the performance of inundation models, incorporating satellite observations, post-tsunami measurements, and the confidence level associated with inherent DEM error characteristics. The results demonstrated that the error-reduced variants of Copernicus DEM (i.e., FABDEM and DiluviumDEM) satisfied all reliability criteria. Incorporating these elevation models with LCR models improved the accuracy of inundation depth estimates; however, it reduced the agreement between simulated and observed inundation extents. We observed that applying high-resolution LCR models had a minimal impact on overland inundation extents but still influenced the exposure assessment, especially in high-density urban areas.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems