Laws of the iterated logarithm for occupation times of Markov processes

IF 1.1 2区 数学 Q3 STATISTICS & PROBABILITY
Soobin Cho , Panki Kim , Jaehun Lee
{"title":"Laws of the iterated logarithm for occupation times of Markov processes","authors":"Soobin Cho ,&nbsp;Panki Kim ,&nbsp;Jaehun Lee","doi":"10.1016/j.spa.2024.104552","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we discuss the laws of the iterated logarithm (LIL) for occupation times of Markov processes <span><math><mi>Y</mi></math></span> in general metric measure space near zero (near infinity, respectively) under minimal assumptions around zero (near infinity, respectively). The LILs near zero in this paper cover the case that the function <span><math><mi>Φ</mi></math></span> in our truncated occupation times <span><math><mrow><mi>r</mi><mo>↦</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mi>Φ</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow></mrow></msubsup><msub><mrow><mi>1</mi></mrow><mrow><mi>B</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>Y</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>)</mo></mrow><mi>d</mi><mi>s</mi></mrow></math></span> is spatially dependent on the variable <span><math><mi>x</mi></math></span>. Such function <span><math><mrow><mi>Φ</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow></mrow></math></span> is an iterated logarithm of mean exit times of <span><math><mi>Y</mi></math></span> from balls <span><math><mrow><mi>B</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow></mrow></math></span> of radius <span><math><mi>r</mi></math></span>. We first establish LILs of (truncated) occupation times on balls <span><math><mrow><mi>B</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow></mrow></math></span> up to the function <span><math><mrow><mi>Φ</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow></mrow></math></span> Our first result on LILs of occupation times covers both near zero and near infinity cases, irrespective of transience and recurrence of the process. Further, we establish a similar LIL for total occupation times <span><math><mrow><mi>r</mi><mo>↦</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mi>∞</mi></mrow></msubsup><msub><mrow><mi>1</mi></mrow><mrow><mi>B</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>r</mi><mo>)</mo></mrow></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>Y</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>)</mo></mrow><mi>d</mi><mi>s</mi></mrow></math></span> when the process is transient. Our second main result addresses large time behaviors of occupation times <span><math><mrow><mi>t</mi><mo>↦</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mi>t</mi></mrow></msubsup><msub><mrow><mi>1</mi></mrow><mrow><mi>A</mi></mrow></msub><mrow><mo>(</mo><msub><mrow><mi>Y</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>)</mo></mrow><mi>d</mi><mi>s</mi></mrow></math></span> under an additional condition that guarantees the recurrence of the process. Our results cover a large class of Feller (Levy-like) processes, random conductance models with long range jumps, jump processes with mixed polynomial local growths and jump processes with singular jumping kernels.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"181 ","pages":"Article 104552"},"PeriodicalIF":1.1000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414924002606","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we discuss the laws of the iterated logarithm (LIL) for occupation times of Markov processes Y in general metric measure space near zero (near infinity, respectively) under minimal assumptions around zero (near infinity, respectively). The LILs near zero in this paper cover the case that the function Φ in our truncated occupation times r0Φ(x,r)1B(x,r)(Ys)ds is spatially dependent on the variable x. Such function Φ(x,r) is an iterated logarithm of mean exit times of Y from balls B(x,r) of radius r. We first establish LILs of (truncated) occupation times on balls B(x,r) up to the function Φ(x,r) Our first result on LILs of occupation times covers both near zero and near infinity cases, irrespective of transience and recurrence of the process. Further, we establish a similar LIL for total occupation times r01B(x,r)(Ys)ds when the process is transient. Our second main result addresses large time behaviors of occupation times t0t1A(Ys)ds under an additional condition that guarantees the recurrence of the process. Our results cover a large class of Feller (Levy-like) processes, random conductance models with long range jumps, jump processes with mixed polynomial local growths and jump processes with singular jumping kernels.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信