Mapping built infrastructure in semi-arid systems using data integration and open-source approaches for image classification

IF 3.8 Q2 ENVIRONMENTAL SCIENCES
Megan R. Dolman , Nicholas E. Kolarik , T. Trevor Caughlin , Jodi S. Brandt , Rebecca L. Som Castellano , Megan E. Cattau
{"title":"Mapping built infrastructure in semi-arid systems using data integration and open-source approaches for image classification","authors":"Megan R. Dolman ,&nbsp;Nicholas E. Kolarik ,&nbsp;T. Trevor Caughlin ,&nbsp;Jodi S. Brandt ,&nbsp;Rebecca L. Som Castellano ,&nbsp;Megan E. Cattau","doi":"10.1016/j.rsase.2025.101472","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate land use land cover (LULC) maps that delineate built infrastructure are useful for numerous applications, from urban planning, humanitarian response, disaster management, to informing decision making for reducing human exposure to natural hazards, such as wildfire. Existing products lack sufficient spatial, temporal, and thematic resolution, omitting critical information needed to capture LULC trends accurately over time. Advancements in remote sensing imagery, open-source software and cloud computing offer opportunities to address these challenges. Using Google Earth Engine, we developed a novel built infrastructure detection method in semi-arid systems by applying a random forest classifier to a fusion of Sentinel-1 and Sentinel-2 time series. Our classifier performed well, differentiating three built environment types: residential, infrastructure, and paved, with overall accuracies ranging from 90 to 96%. Producer accuracies were highest for the infrastructure class (98–99%), followed by the residential class (91–96%). Sentinel-1 variables were important for differentiating built classes. We illustrated the utility of our mapped products by generating a time-series of change across southern Idaho spanning 2015 to 2024 and comparing this with publicly available products: National Land Cover Database (NLCD), Microsoft Building Footprints (MBF) and the global Dynamic World (DW). For 2024, our product estimated 5.88% of the study area as built, aligning closely with NLCD (6%) and DW (4.64%). Our mapped built infrastructure products offer enhancements over NLCD spatially and temporally, over DW thematically, and over MBF both temporally and thematically. We demonstrate the potential of fusing data sources to improve LULC mapping and present a case for regionally parameterized models that can more accurately capture built infrastructure change over time. We used open-source approaches for built infrastructure detection, aiming for broader adoption of this workflow across other ecosystems and environments to support decision-making.</div></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"37 ","pages":"Article 101472"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938525000254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate land use land cover (LULC) maps that delineate built infrastructure are useful for numerous applications, from urban planning, humanitarian response, disaster management, to informing decision making for reducing human exposure to natural hazards, such as wildfire. Existing products lack sufficient spatial, temporal, and thematic resolution, omitting critical information needed to capture LULC trends accurately over time. Advancements in remote sensing imagery, open-source software and cloud computing offer opportunities to address these challenges. Using Google Earth Engine, we developed a novel built infrastructure detection method in semi-arid systems by applying a random forest classifier to a fusion of Sentinel-1 and Sentinel-2 time series. Our classifier performed well, differentiating three built environment types: residential, infrastructure, and paved, with overall accuracies ranging from 90 to 96%. Producer accuracies were highest for the infrastructure class (98–99%), followed by the residential class (91–96%). Sentinel-1 variables were important for differentiating built classes. We illustrated the utility of our mapped products by generating a time-series of change across southern Idaho spanning 2015 to 2024 and comparing this with publicly available products: National Land Cover Database (NLCD), Microsoft Building Footprints (MBF) and the global Dynamic World (DW). For 2024, our product estimated 5.88% of the study area as built, aligning closely with NLCD (6%) and DW (4.64%). Our mapped built infrastructure products offer enhancements over NLCD spatially and temporally, over DW thematically, and over MBF both temporally and thematically. We demonstrate the potential of fusing data sources to improve LULC mapping and present a case for regionally parameterized models that can more accurately capture built infrastructure change over time. We used open-source approaches for built infrastructure detection, aiming for broader adoption of this workflow across other ecosystems and environments to support decision-making.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
8.50%
发文量
204
审稿时长
65 days
期刊介绍: The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信