A Nudge to the Truth: Atom Conservation as a Hard Constraint in Models of Atmospheric Composition Using a Species-Weighted Correction

Patrick Obin Sturm*,  and , Sam J. Silva, 
{"title":"A Nudge to the Truth: Atom Conservation as a Hard Constraint in Models of Atmospheric Composition Using a Species-Weighted Correction","authors":"Patrick Obin Sturm*,&nbsp; and ,&nbsp;Sam J. Silva,&nbsp;","doi":"10.1021/acsestair.4c0022010.1021/acsestair.4c00220","DOIUrl":null,"url":null,"abstract":"<p >Computational models of atmospheric composition are not always physically consistent. For example, not all models respect fundamental conservation laws such as conservation of atoms in an interconnected chemical system. In well performing models, these unphysical deviations are often ignored because they are frequently minor, and thus only need a small nudge to perfectly conserve mass. Here we introduce a method that anchors a prediction from any numerical model to physically consistent hard constraints, nudging concentrations to the nearest solution that respects the conservation laws. This closed-form model-agnostic correction uses a single matrix operation to minimally perturb the predicted concentrations to ensure that atoms are conserved to machine precision. To demonstrate this approach, we train a gradient boosting decision tree ensemble to emulate a small reference model of ozone photochemistry and test the effect of the correction on accurate but nonconservative predictions. The nudging approach minimally perturbs the already well-predicted results for most species, but decreases the accuracy of important oxidants, including radicals. We develop a weighted extension of this nudging approach that considers the uncertainty and magnitude of each species in the correction. This species-level weighting approach is essential to accurately predict important low concentration species such as radicals. We find that applying the species-weighted correction slightly improves overall accuracy by nudging unphysical predictions to a more likely mass-conserving solution.</p><p >Computational models of atmospheric composition do not always make scientifically trustworthy predictions. This corrective approach minimally adjusts the predicted concentrations of chemical species to guarantee conservation of mass.</p>","PeriodicalId":100014,"journal":{"name":"ACS ES&T Air","volume":"2 1","pages":"99–108 99–108"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsestair.4c00220","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T Air","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestair.4c00220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Computational models of atmospheric composition are not always physically consistent. For example, not all models respect fundamental conservation laws such as conservation of atoms in an interconnected chemical system. In well performing models, these unphysical deviations are often ignored because they are frequently minor, and thus only need a small nudge to perfectly conserve mass. Here we introduce a method that anchors a prediction from any numerical model to physically consistent hard constraints, nudging concentrations to the nearest solution that respects the conservation laws. This closed-form model-agnostic correction uses a single matrix operation to minimally perturb the predicted concentrations to ensure that atoms are conserved to machine precision. To demonstrate this approach, we train a gradient boosting decision tree ensemble to emulate a small reference model of ozone photochemistry and test the effect of the correction on accurate but nonconservative predictions. The nudging approach minimally perturbs the already well-predicted results for most species, but decreases the accuracy of important oxidants, including radicals. We develop a weighted extension of this nudging approach that considers the uncertainty and magnitude of each species in the correction. This species-level weighting approach is essential to accurately predict important low concentration species such as radicals. We find that applying the species-weighted correction slightly improves overall accuracy by nudging unphysical predictions to a more likely mass-conserving solution.

Computational models of atmospheric composition do not always make scientifically trustworthy predictions. This corrective approach minimally adjusts the predicted concentrations of chemical species to guarantee conservation of mass.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信