Mechanically Robust, Reprocessable, and Light-Controlled Healable Solvent-Free Lignin-Containing Polyurethane Elastomers Based on Dynamic Phenol-Carbamate Network

IF 5.1 1区 化学 Q1 POLYMER SCIENCE
Jin Peng, Haixu Wang, Shusheng Chen*, Weifeng Liu* and Xueqing Qiu, 
{"title":"Mechanically Robust, Reprocessable, and Light-Controlled Healable Solvent-Free Lignin-Containing Polyurethane Elastomers Based on Dynamic Phenol-Carbamate Network","authors":"Jin Peng,&nbsp;Haixu Wang,&nbsp;Shusheng Chen*,&nbsp;Weifeng Liu* and Xueqing Qiu,&nbsp;","doi":"10.1021/acs.macromol.4c0225810.1021/acs.macromol.4c02258","DOIUrl":null,"url":null,"abstract":"<p >In this study, we introduce an innovative one-step, solvent-free approach for preparing lignin-containing polyurethane elastomers (LPUes) with nanomicro phase-separated structure and dynamic dual-cross-linking networks comprising both phenol-carbamate bonds (PCBs) and hydrogen bonds. This distinctive structural design imparted exceptional mechanical properties to the LPUes. The sample containing 22.9 wt % phenolized lignin exhibited tensile strength of 44.6 MPa, elongation at break of 714.6%, and toughness of 148.0 MJ/m<sup>3</sup>. The abundance of dynamic PCBs also conferred remarkable reprocessing capabilities, with these LPUes retaining over 98% for tensile strength and 94.4% for toughness after two hot-pressing cycles. Moreover, the incorporation of lignin endowed the LPUes with photothermal properties, facilitating efficient light-controlled self-healing and shape-memory functionalities. This work offers an innovative pathway to harmonize the mechanical properties and thermal adaptability in the development of sustainable and high-performance LPUes, thereby opening their avenues for diverse potential applications.</p>","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"58 2","pages":"836–854 836–854"},"PeriodicalIF":5.1000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.macromol.4c02258","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we introduce an innovative one-step, solvent-free approach for preparing lignin-containing polyurethane elastomers (LPUes) with nanomicro phase-separated structure and dynamic dual-cross-linking networks comprising both phenol-carbamate bonds (PCBs) and hydrogen bonds. This distinctive structural design imparted exceptional mechanical properties to the LPUes. The sample containing 22.9 wt % phenolized lignin exhibited tensile strength of 44.6 MPa, elongation at break of 714.6%, and toughness of 148.0 MJ/m3. The abundance of dynamic PCBs also conferred remarkable reprocessing capabilities, with these LPUes retaining over 98% for tensile strength and 94.4% for toughness after two hot-pressing cycles. Moreover, the incorporation of lignin endowed the LPUes with photothermal properties, facilitating efficient light-controlled self-healing and shape-memory functionalities. This work offers an innovative pathway to harmonize the mechanical properties and thermal adaptability in the development of sustainable and high-performance LPUes, thereby opening their avenues for diverse potential applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecules
Macromolecules 工程技术-高分子科学
CiteScore
9.30
自引率
16.40%
发文量
942
审稿时长
2 months
期刊介绍: Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信