Formulation and Evaluation of Lipid/Soluplus-Stabilized Nanocrystals of Paclitaxel and Bosutinib for a Synergistic Effect in Non-Small Cell Lung Cancer Therapy

IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Manish Kumar, Pooja Goswami, Abhishek Jha, Vividha Dhapte-Pawar, Biplob Koch* and Brahmeshwar Mishra*, 
{"title":"Formulation and Evaluation of Lipid/Soluplus-Stabilized Nanocrystals of Paclitaxel and Bosutinib for a Synergistic Effect in Non-Small Cell Lung Cancer Therapy","authors":"Manish Kumar,&nbsp;Pooja Goswami,&nbsp;Abhishek Jha,&nbsp;Vividha Dhapte-Pawar,&nbsp;Biplob Koch* and Brahmeshwar Mishra*,&nbsp;","doi":"10.1021/acs.molpharmaceut.4c0133410.1021/acs.molpharmaceut.4c01334","DOIUrl":null,"url":null,"abstract":"<p >Tyrosine kinase inhibitors have been employed for the treatment of lung cancer, owing to their role in regulating irregulated pathways or mutated genes. Bosutinib, a nonreceptor tyrosine kinase, has been recently investigated for lung cancer treatment. Bosutinib can also be used with paclitaxel as a combinatorial approach to receive a synergistic effect for the effective management of lung cancer. Furthermore, the nanocrystals of each can also be prepared and in combination can produce a more pronounced impact than the drug combination. Herein, the prepared Soluplus/lipid-stabilized nanocrystals of paclitaxel and bosutinib were rod to cubic in shape of about 150–250 nm. The nanocrystals were stable, provided controlled drug release, and exhibited a higher aerosolization performance. The nanocrystal combination demonstrated higher anticancer activity than the drug combination synergy against A549 cancer cells. The nanocrystals increased the level of cellular internalization in cancer cells, thereby inducing higher ROS generation and apoptosis of cancer cells. Furthermore, the lipid/Soluplus-stabilized nanocrystals exhibited higher translocation potential compared with only Soluplus-stabilized nanocrystals. The nanocrystals administered intratracheally showed a lower drug distribution to other organs, with prolonged drug retention in the lungs, suggesting the higher efficacy of developed nanocrystals in targeting the lungs. In conclusion, lipid-modified nanocrystals can be a novel approach for the effective management of lung cancer.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":"22 2","pages":"1061–1078 1061–1078"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.4c01334","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Tyrosine kinase inhibitors have been employed for the treatment of lung cancer, owing to their role in regulating irregulated pathways or mutated genes. Bosutinib, a nonreceptor tyrosine kinase, has been recently investigated for lung cancer treatment. Bosutinib can also be used with paclitaxel as a combinatorial approach to receive a synergistic effect for the effective management of lung cancer. Furthermore, the nanocrystals of each can also be prepared and in combination can produce a more pronounced impact than the drug combination. Herein, the prepared Soluplus/lipid-stabilized nanocrystals of paclitaxel and bosutinib were rod to cubic in shape of about 150–250 nm. The nanocrystals were stable, provided controlled drug release, and exhibited a higher aerosolization performance. The nanocrystal combination demonstrated higher anticancer activity than the drug combination synergy against A549 cancer cells. The nanocrystals increased the level of cellular internalization in cancer cells, thereby inducing higher ROS generation and apoptosis of cancer cells. Furthermore, the lipid/Soluplus-stabilized nanocrystals exhibited higher translocation potential compared with only Soluplus-stabilized nanocrystals. The nanocrystals administered intratracheally showed a lower drug distribution to other organs, with prolonged drug retention in the lungs, suggesting the higher efficacy of developed nanocrystals in targeting the lungs. In conclusion, lipid-modified nanocrystals can be a novel approach for the effective management of lung cancer.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Pharmaceutics
Molecular Pharmaceutics 医学-药学
CiteScore
8.00
自引率
6.10%
发文量
391
审稿时长
2 months
期刊介绍: Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development. Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信