Membrane Concentrate Recirculation to Activated Sludge: Balancing Organic Micropollutant Removal and Salt Retention

IF 4.8 Q1 ENVIRONMENTAL SCIENCES
Hans David Wendt, Wendy A. Jonkers, Antoine J. B. Kemperman, Alette A. M. Langenhoff, Rob G. H. Lammertink, Walter G. J. van der Meer and Wiebe M. de Vos*, 
{"title":"Membrane Concentrate Recirculation to Activated Sludge: Balancing Organic Micropollutant Removal and Salt Retention","authors":"Hans David Wendt,&nbsp;Wendy A. Jonkers,&nbsp;Antoine J. B. Kemperman,&nbsp;Alette A. M. Langenhoff,&nbsp;Rob G. H. Lammertink,&nbsp;Walter G. J. van der Meer and Wiebe M. de Vos*,&nbsp;","doi":"10.1021/acsestwater.4c0084110.1021/acsestwater.4c00841","DOIUrl":null,"url":null,"abstract":"<p >Current wastewater treatment plants have not been designed to remove organic micropollutants (OMPs) that are now prevalent in surface waters. This desktop study investigates the Membrane Concentrate Recirculation to Activated Sludge (MCRAS) process, which enhances the removal of the OMP by combining conventional activated sludge treatment with membrane filtration and recirculation of the concentrate back to the activated sludge. The process limits the release of the OMP to the environment and offers an integrated approach for treating the concentrate. Four model OMPs (diclofenac, carbamazepine, ibuprofen, and triclosan) were studied using a mass balance model and literature data, comparing the performance of five membrane types (XLE, NF90, NF270, TFC-SR2, and dNF40). Four removal scenarios were identified based on biodegradation and membrane retention. Notably, with low biodegradation and high membrane retention, OMP removal can be significantly enhanced: diclofenac removal increased from 29 to 72% with an NF270 membrane and up to 97% with XLE or NF90 membranes. However, membrane use also leads to the accumulation of salts, as salts are not biodegradable. This highlights the need for a balance between the OMP and salt retention. Therefore, future membrane development should focus on improving the retention of the OMP while minimizing salt retention.</p><p >The Membrane Concentrate Recirculation to Activated Sludge (MCRAS) process enhances organic micropollutant (OMP) removal from wastewater while salts and OMPs may be accumulated in this process.</p>","PeriodicalId":93847,"journal":{"name":"ACS ES&T water","volume":"5 1","pages":"284–299 284–299"},"PeriodicalIF":4.8000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsestwater.4c00841","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T water","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestwater.4c00841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Current wastewater treatment plants have not been designed to remove organic micropollutants (OMPs) that are now prevalent in surface waters. This desktop study investigates the Membrane Concentrate Recirculation to Activated Sludge (MCRAS) process, which enhances the removal of the OMP by combining conventional activated sludge treatment with membrane filtration and recirculation of the concentrate back to the activated sludge. The process limits the release of the OMP to the environment and offers an integrated approach for treating the concentrate. Four model OMPs (diclofenac, carbamazepine, ibuprofen, and triclosan) were studied using a mass balance model and literature data, comparing the performance of five membrane types (XLE, NF90, NF270, TFC-SR2, and dNF40). Four removal scenarios were identified based on biodegradation and membrane retention. Notably, with low biodegradation and high membrane retention, OMP removal can be significantly enhanced: diclofenac removal increased from 29 to 72% with an NF270 membrane and up to 97% with XLE or NF90 membranes. However, membrane use also leads to the accumulation of salts, as salts are not biodegradable. This highlights the need for a balance between the OMP and salt retention. Therefore, future membrane development should focus on improving the retention of the OMP while minimizing salt retention.

The Membrane Concentrate Recirculation to Activated Sludge (MCRAS) process enhances organic micropollutant (OMP) removal from wastewater while salts and OMPs may be accumulated in this process.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信