Nano-Based Strategies Aiming at Tumor Microenvironment for Improved Cancer Therapy

IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Tianhui Liu, Changshun Lu, Xue Jiang, Yutong Wang, Zhengrong Chen, Chunshuang Qi, Xiaoru Xu, Xiangru Feng* and Qingshuang Wang*, 
{"title":"Nano-Based Strategies Aiming at Tumor Microenvironment for Improved Cancer Therapy","authors":"Tianhui Liu,&nbsp;Changshun Lu,&nbsp;Xue Jiang,&nbsp;Yutong Wang,&nbsp;Zhengrong Chen,&nbsp;Chunshuang Qi,&nbsp;Xiaoru Xu,&nbsp;Xiangru Feng* and Qingshuang Wang*,&nbsp;","doi":"10.1021/acs.molpharmaceut.4c0126710.1021/acs.molpharmaceut.4c01267","DOIUrl":null,"url":null,"abstract":"<p >Malignant tumors pose a considerable threat to human life and health. Traditional treatments, such as radiotherapy and chemotherapy, often lack specificity, leading to collateral damage to normal tissues. Tumor microenvironment (TME) is characterized by hypoxia, acidity, redox imbalances, and elevated ATP levels factors that collectively promote tumor growth and metastasis. This review provides a comprehensive overview of the nanoparticles developed in recent years for TME-responsive strategies or TME-modulating methods for tumor therapy. The TME-responsive strategies focus on designing and synthesizing nanoparticles that can interact with the tumor microenvironment to achieve precisely controlled drug release. These nanoparticles activate drug release under specific conditions within the tumor environment, thereby enhancing the efficacy of the drugs while reducing toxicity to normal cells. Moreover, simply eliminating tumor cells does not fundamentally solve the problem. Only by comprehensively regulating the TME to make it unsuitable for tumor cell survival and proliferation can we achieve more thorough therapeutic effects and reduce the risk of tumor recurrence. TME regulation strategies aim to suppress the growth and metastasis of tumor cells by modulating various components within the TME. These strategies not only improve treatment outcomes but also have the potential to lay the foundation for future personalized cancer therapies.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":"22 2","pages":"647–677 647–677"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.4c01267","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Malignant tumors pose a considerable threat to human life and health. Traditional treatments, such as radiotherapy and chemotherapy, often lack specificity, leading to collateral damage to normal tissues. Tumor microenvironment (TME) is characterized by hypoxia, acidity, redox imbalances, and elevated ATP levels factors that collectively promote tumor growth and metastasis. This review provides a comprehensive overview of the nanoparticles developed in recent years for TME-responsive strategies or TME-modulating methods for tumor therapy. The TME-responsive strategies focus on designing and synthesizing nanoparticles that can interact with the tumor microenvironment to achieve precisely controlled drug release. These nanoparticles activate drug release under specific conditions within the tumor environment, thereby enhancing the efficacy of the drugs while reducing toxicity to normal cells. Moreover, simply eliminating tumor cells does not fundamentally solve the problem. Only by comprehensively regulating the TME to make it unsuitable for tumor cell survival and proliferation can we achieve more thorough therapeutic effects and reduce the risk of tumor recurrence. TME regulation strategies aim to suppress the growth and metastasis of tumor cells by modulating various components within the TME. These strategies not only improve treatment outcomes but also have the potential to lay the foundation for future personalized cancer therapies.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Pharmaceutics
Molecular Pharmaceutics 医学-药学
CiteScore
8.00
自引率
6.10%
发文量
391
审稿时长
2 months
期刊介绍: Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development. Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信