ALC-0315 Lipid-Based mRNA LNP Induces Stronger Cellular Immune Responses Postvaccination

IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Zuchen Song, Lan Jin, Lina Jiao, Ruihong Yu, Huina Liu, Shun Zhang, Yaoren Hu, Yuechao Sun, Entao Li, Guofang Zhao*, Zhenguang Liu* and Ting Cai*, 
{"title":"ALC-0315 Lipid-Based mRNA LNP Induces Stronger Cellular Immune Responses Postvaccination","authors":"Zuchen Song,&nbsp;Lan Jin,&nbsp;Lina Jiao,&nbsp;Ruihong Yu,&nbsp;Huina Liu,&nbsp;Shun Zhang,&nbsp;Yaoren Hu,&nbsp;Yuechao Sun,&nbsp;Entao Li,&nbsp;Guofang Zhao*,&nbsp;Zhenguang Liu* and Ting Cai*,&nbsp;","doi":"10.1021/acs.molpharmaceut.4c0099510.1021/acs.molpharmaceut.4c00995","DOIUrl":null,"url":null,"abstract":"<p >At the end of 2019, SARS-CoV-2 emerged and rapidly spread, having a profound negative impact on human health and socioeconomic conditions. In response to this unprecedented global health crisis, significant advancements were made in the mRNA vaccine technology. In this study, we have compared the difference between two SARS-CoV-2 receptor-binding domain (RBD) mRNA-Lipid nanoparticle (LNP) vaccines prepared from two different ionizable cationic lipids: ALC-0315 and MC3. Characterization of RBD mRNA-LNPs showed that both MC3-LNP and ALC-0315-LNP are highly uniform and stable. Furthermore, we assessed the humoral immune response in mice after immunization; our findings indicated that both vaccine formulations effectively enhanced the formation and differentiation of germinal center (GC). Notably, the mice immunized with the ALC-0315-LNP vaccine elicited higher levels of IgG and its subclasses and significantly enhanced the activation of dendritic cells and T cells in draining lymph nodes (dLNs) compared to those immunized with the MC3-LNP vaccine. Further analysis of the T cell phenotype after splenic restimulation showed that mice injected with both LNP mRNA vaccines had significantly increased activation of the splenic T cells and Th1-type cytokine production. In addition, our finding showed that both LNP mRNA vaccines significantly increased the proportions of follicular helper T cells (Tfh) and long-lasting plasma cells in the dLNs of mice on day 14 postimmunization compared to control. In conclusion, both ALC-0315 and MC3 exhibited good stability and immunogenicity as mRNA-LNP recipes, but the ALC-0315-based mRNA-LNP vaccine showed higher efficacy in humoral and cellular immune responses compared to MC3.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":"22 2","pages":"859–870 859–870"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.4c00995","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

At the end of 2019, SARS-CoV-2 emerged and rapidly spread, having a profound negative impact on human health and socioeconomic conditions. In response to this unprecedented global health crisis, significant advancements were made in the mRNA vaccine technology. In this study, we have compared the difference between two SARS-CoV-2 receptor-binding domain (RBD) mRNA-Lipid nanoparticle (LNP) vaccines prepared from two different ionizable cationic lipids: ALC-0315 and MC3. Characterization of RBD mRNA-LNPs showed that both MC3-LNP and ALC-0315-LNP are highly uniform and stable. Furthermore, we assessed the humoral immune response in mice after immunization; our findings indicated that both vaccine formulations effectively enhanced the formation and differentiation of germinal center (GC). Notably, the mice immunized with the ALC-0315-LNP vaccine elicited higher levels of IgG and its subclasses and significantly enhanced the activation of dendritic cells and T cells in draining lymph nodes (dLNs) compared to those immunized with the MC3-LNP vaccine. Further analysis of the T cell phenotype after splenic restimulation showed that mice injected with both LNP mRNA vaccines had significantly increased activation of the splenic T cells and Th1-type cytokine production. In addition, our finding showed that both LNP mRNA vaccines significantly increased the proportions of follicular helper T cells (Tfh) and long-lasting plasma cells in the dLNs of mice on day 14 postimmunization compared to control. In conclusion, both ALC-0315 and MC3 exhibited good stability and immunogenicity as mRNA-LNP recipes, but the ALC-0315-based mRNA-LNP vaccine showed higher efficacy in humoral and cellular immune responses compared to MC3.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Pharmaceutics
Molecular Pharmaceutics 医学-药学
CiteScore
8.00
自引率
6.10%
发文量
391
审稿时长
2 months
期刊介绍: Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development. Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信