Highly Luminescent Zero-Dimensional Organic Metal (Zn, Mn) Alloyed Halides as Single-Component Yellow Phosphor for White LED Applications

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Dongheng Zhao, Qian Ma*, Ying Sun, Lingyu Li, Huayushuo Zhang, Bolong Li, Zhiqiang Liu and Xiaomei Jiang*, 
{"title":"Highly Luminescent Zero-Dimensional Organic Metal (Zn, Mn) Alloyed Halides as Single-Component Yellow Phosphor for White LED Applications","authors":"Dongheng Zhao,&nbsp;Qian Ma*,&nbsp;Ying Sun,&nbsp;Lingyu Li,&nbsp;Huayushuo Zhang,&nbsp;Bolong Li,&nbsp;Zhiqiang Liu and Xiaomei Jiang*,&nbsp;","doi":"10.1021/acsaem.4c0272310.1021/acsaem.4c02723","DOIUrl":null,"url":null,"abstract":"<p >Zero-dimensional organic zinc halides have garnered significant attention as efficient and eco-friendly photoluminescent materials. However, its luminance efficiency, which is typically attributed to self-trapped excitons formed within zinc halide tetrahedra, often encounters a serious thermal quenching problem. This issue significantly limits its application in the field of solid-state lighting. Intriguingly, the incorporation of tetra-coordinated Mn<sup>2+</sup> ions into these organic zinc halides can effectively mitigate unnecessary electron interactions and nonradiative energy transfer between Mn–Mn, achieving significantly improved photoluminescence quantum yield (PLQY) in the alloyed materials. In this work, a series of zero-dimensional Mn<sup>2+</sup>-alloyed 4-benzylpiperidinum zinc chloride hybrids were designed and synthesized by a solvent evaporation method. It is noteworthy that the pure zinc chloride shows a negligible visible emission at 510 nm, whereas (C<sub>12</sub>H<sub>12</sub>N)<sub>2</sub>Mn<sub><i>x</i></sub>Zn<sub>1–<i>x</i></sub>Cl<sub>4</sub> (<i>x</i> = 0.25, 0.5, 0.75, 1) emits visible light ranging from green to yellow at room temperature. Incorporating Mn has led to a remarkable enhancement in PLQY, increasing from a mere 4.02% in the organic zinc halide to an impressive 94.45% in the (C<sub>12</sub>H<sub>12</sub>N)<sub>2</sub>Mn<sub>0.75</sub>Zn<sub>0.25</sub>Cl<sub>4</sub>. The white LED was successfully fabricated by employing the optimal sample as a single-component yellow phosphor coated on 450 nm chip. The correlated color temperature was determined to be 4770 K with a color rendering index as high as 91. It was also demonstrated with good luminous stability under different working currents. This research provides a straightforward approach for developing eco-friendly, cost-effective, and high-performance single-component yellow phosphors for white LED applications.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 2","pages":"1201–1209 1201–1209"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c02723","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Zero-dimensional organic zinc halides have garnered significant attention as efficient and eco-friendly photoluminescent materials. However, its luminance efficiency, which is typically attributed to self-trapped excitons formed within zinc halide tetrahedra, often encounters a serious thermal quenching problem. This issue significantly limits its application in the field of solid-state lighting. Intriguingly, the incorporation of tetra-coordinated Mn2+ ions into these organic zinc halides can effectively mitigate unnecessary electron interactions and nonradiative energy transfer between Mn–Mn, achieving significantly improved photoluminescence quantum yield (PLQY) in the alloyed materials. In this work, a series of zero-dimensional Mn2+-alloyed 4-benzylpiperidinum zinc chloride hybrids were designed and synthesized by a solvent evaporation method. It is noteworthy that the pure zinc chloride shows a negligible visible emission at 510 nm, whereas (C12H12N)2MnxZn1–xCl4 (x = 0.25, 0.5, 0.75, 1) emits visible light ranging from green to yellow at room temperature. Incorporating Mn has led to a remarkable enhancement in PLQY, increasing from a mere 4.02% in the organic zinc halide to an impressive 94.45% in the (C12H12N)2Mn0.75Zn0.25Cl4. The white LED was successfully fabricated by employing the optimal sample as a single-component yellow phosphor coated on 450 nm chip. The correlated color temperature was determined to be 4770 K with a color rendering index as high as 91. It was also demonstrated with good luminous stability under different working currents. This research provides a straightforward approach for developing eco-friendly, cost-effective, and high-performance single-component yellow phosphors for white LED applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信