Prediction of Temperature-Dependent Henry’s Law Constants by Matrix Completion

IF 2.9 2区 化学 Q3 CHEMISTRY, PHYSICAL
Nicolas Hayer, Hans Hasse and Fabian Jirasek*, 
{"title":"Prediction of Temperature-Dependent Henry’s Law Constants by Matrix Completion","authors":"Nicolas Hayer,&nbsp;Hans Hasse and Fabian Jirasek*,&nbsp;","doi":"10.1021/acs.jpcb.4c0719610.1021/acs.jpcb.4c07196","DOIUrl":null,"url":null,"abstract":"<p >Methods for predicting Henry’s law constants <i>H</i><sub><i>ij</i></sub> describing the solubility of solutes <i>i</i> in solvents <i>j</i> as a function of temperature are essential in chemical engineering. While isothermal properties of binary mixtures can conveniently be predicted with matrix completion methods (MCMs) from machine learning, we advance their application to the temperature-dependent prediction of <i>H</i><sub><i>ij</i></sub> in the present work by combining them with physical equations describing the temperature dependence. For training the methods, experimental <i>H</i><sub><i>ij</i></sub> data for 122 solutes and 399 solvents ranging from 173.15 to 573.15 K were taken from the Dortmund Data Bank. Two MCMs are proposed: a data-driven MCM that relies solely on experimental data and a hybrid MCM that incorporates predictions from the established Predictive Soave-Redlich-Kwong (PSRK) equation of state (EoS), effectively combining physical knowledge and machine learning. The performance of these MCMs is assessed via leave-one-out analysis and compared to that of the PSRK-EoS, demonstrating superior prediction accuracy.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":"129 1","pages":"409–416 409–416"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcb.4c07196","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Methods for predicting Henry’s law constants Hij describing the solubility of solutes i in solvents j as a function of temperature are essential in chemical engineering. While isothermal properties of binary mixtures can conveniently be predicted with matrix completion methods (MCMs) from machine learning, we advance their application to the temperature-dependent prediction of Hij in the present work by combining them with physical equations describing the temperature dependence. For training the methods, experimental Hij data for 122 solutes and 399 solvents ranging from 173.15 to 573.15 K were taken from the Dortmund Data Bank. Two MCMs are proposed: a data-driven MCM that relies solely on experimental data and a hybrid MCM that incorporates predictions from the established Predictive Soave-Redlich-Kwong (PSRK) equation of state (EoS), effectively combining physical knowledge and machine learning. The performance of these MCMs is assessed via leave-one-out analysis and compared to that of the PSRK-EoS, demonstrating superior prediction accuracy.

Abstract Image

用矩阵补全法预测温度相关的亨利定律常数
预测亨利定律常数(描述溶质在溶剂j中的溶解度随温度的变化)的方法在化学工程中是必不可少的。虽然二元混合物的等温性质可以通过机器学习的矩阵补全方法(mcm)方便地预测,但我们将其与描述温度依赖性的物理方程结合起来,将其应用于Hij的温度依赖性预测。为了训练方法,我们从多特蒙德数据库中获取了122种溶质和399种溶剂的实验Hij数据,范围为173.15 ~ 573.15 K。提出了两种MCM:一种是数据驱动的MCM,它完全依赖于实验数据;另一种是混合MCM,它结合了来自已建立的预测性Soave-Redlich-Kwong (PSRK)状态方程(EoS)的预测,有效地结合了物理知识和机器学习。这些mcm的性能通过留一分析进行评估,并与PSRK-EoS进行比较,显示出更高的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.80
自引率
9.10%
发文量
965
审稿时长
1.6 months
期刊介绍: An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信