Rongrong Huang, Qinglong Qiao, Deborah Seah, Tianruo Shen, Xia Wu, Fabio de Moliner, Chao Wang, Nannan Ding, Weijie Chi, Huaming Sun, Marc Vendrell, Zhaochao Xu, Yu Fang, Xiaogang Liu
{"title":"Precision Molecular Engineering of Compact Near-Infrared Fluorophores","authors":"Rongrong Huang, Qinglong Qiao, Deborah Seah, Tianruo Shen, Xia Wu, Fabio de Moliner, Chao Wang, Nannan Ding, Weijie Chi, Huaming Sun, Marc Vendrell, Zhaochao Xu, Yu Fang, Xiaogang Liu","doi":"10.1021/jacs.4c16087","DOIUrl":null,"url":null,"abstract":"Organic fluorophores with near-infrared (NIR) emission and reduced molecular size are crucial for advancing bioimaging and biosensing technologies. Traditional methods, such as conjugation expansion and heteroatom engineering, often fail to reduce fluorophore size without sacrificing NIR emission properties. Addressing this challenge, our study utilized quantum chemical calculations and structure–property relationship analysis to establish an iterative design approach and enable precision engineering for compact, single-benzene-based NIR fluorophores. These newly developed fluorophores exhibit emissions up to 759 nm and maintain molecular weights as low as 192 g/mol, approximately 50% of that of Cy7. Additionally, they display unique environmental sensitivity─nonemissive in aqueous solutions but highly emissive in lipid environments. This property significantly enhances their utility in wash-free imaging of live cells. Our findings mark a substantial breakthrough in fluorophore engineering, paving the way for more efficient and adaptable imaging methodologies.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"82 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c16087","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Organic fluorophores with near-infrared (NIR) emission and reduced molecular size are crucial for advancing bioimaging and biosensing technologies. Traditional methods, such as conjugation expansion and heteroatom engineering, often fail to reduce fluorophore size without sacrificing NIR emission properties. Addressing this challenge, our study utilized quantum chemical calculations and structure–property relationship analysis to establish an iterative design approach and enable precision engineering for compact, single-benzene-based NIR fluorophores. These newly developed fluorophores exhibit emissions up to 759 nm and maintain molecular weights as low as 192 g/mol, approximately 50% of that of Cy7. Additionally, they display unique environmental sensitivity─nonemissive in aqueous solutions but highly emissive in lipid environments. This property significantly enhances their utility in wash-free imaging of live cells. Our findings mark a substantial breakthrough in fluorophore engineering, paving the way for more efficient and adaptable imaging methodologies.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.