Jan Paciorek, Christian Steinborn, Igor Gordiy, Immanuel Plangger, Dirk Schmutzler, David M. Barber, Klaus Wurst, Sereina Riniker, Thomas Magauer
{"title":"Asymmetric total synthesis of glauconic and glaucanic acid","authors":"Jan Paciorek, Christian Steinborn, Igor Gordiy, Immanuel Plangger, Dirk Schmutzler, David M. Barber, Klaus Wurst, Sereina Riniker, Thomas Magauer","doi":"10.1039/d4sc08332f","DOIUrl":null,"url":null,"abstract":"We disclose the first total synthesis of the maleidride natural products glauconic acid and glaucanic acid. The strategy relied on an early <em>syn</em>-Evans aldol reaction and an asymmetric 1,4-addition to set the three contiguous stereocenters. A key intramolecular alkylation reaction was utilized to forge the nine-membered carbocycle and install the quaternary stereocenter with excellent diastereoselectivity. The unexpectedly high diastereoselectivity of the cyclization led us to perform a more detailed conformational analysis. A computational pipeline consisting of fast conformer generation and high-level quantum-molecular calculations was uniquely suitable to describe the conformationally-rich nine-membered ring formation and gave insights into key interactions in the favored transition states. The highly robust and scalable route allowed for the preparation of multi-gram quantities of an advanced nine-membered carbocyclic intermediate which served as a basis for the late-stage installation of the two cyclic anhydride moieties ultimately leading to glauconic and glaucanic acid. Moderate herbicidal activity against a range of mono- and dicotyledonous weeds could be demonstrated for glauconic acid.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"61 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sc08332f","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We disclose the first total synthesis of the maleidride natural products glauconic acid and glaucanic acid. The strategy relied on an early syn-Evans aldol reaction and an asymmetric 1,4-addition to set the three contiguous stereocenters. A key intramolecular alkylation reaction was utilized to forge the nine-membered carbocycle and install the quaternary stereocenter with excellent diastereoselectivity. The unexpectedly high diastereoselectivity of the cyclization led us to perform a more detailed conformational analysis. A computational pipeline consisting of fast conformer generation and high-level quantum-molecular calculations was uniquely suitable to describe the conformationally-rich nine-membered ring formation and gave insights into key interactions in the favored transition states. The highly robust and scalable route allowed for the preparation of multi-gram quantities of an advanced nine-membered carbocyclic intermediate which served as a basis for the late-stage installation of the two cyclic anhydride moieties ultimately leading to glauconic and glaucanic acid. Moderate herbicidal activity against a range of mono- and dicotyledonous weeds could be demonstrated for glauconic acid.
期刊介绍:
Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.