The Structural, Electronic and Vibrational Properties of LaCrO 3 $$ {}_3 $$ . A Quantum Mechanical Investigation by Using an All Electron Gaussian Type Basis Set and a Full Range Hybrid Functional

IF 3.4 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Khaled E. El-Kelany, Alexander Platonenko, Klaus Doll, Roberto Dovesi
{"title":"The Structural, Electronic and Vibrational Properties of LaCrO\n \n \n \n \n 3\n \n \n $$ {}_3 $$\n . A Quantum Mechanical Investigation by Using an All Electron Gaussian Type Basis Set and a Full Range Hybrid Functional","authors":"Khaled E. El-Kelany,&nbsp;Alexander Platonenko,&nbsp;Klaus Doll,&nbsp;Roberto Dovesi","doi":"10.1002/jcc.27523","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The geometrical, electronic and vibrational properties of LaCrO<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation>$$ {}_3 $$</annotation>\n </semantics></math> have been investigated by using an all electron Gaussian type basis set, the B3LYP functional and the CRYSTAL code, and compared with KVF<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation>$$ {}_3 $$</annotation>\n </semantics></math>: in the two compounds the transition metal is formally in d<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mrow></mrow>\n <mn>3</mn>\n </msup>\n </mrow>\n <annotation>$$ {}^3 $$</annotation>\n </semantics></math> configuration. The high spin t<span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mrow></mrow>\n <mrow>\n <mn>2</mn>\n <mi>g</mi>\n </mrow>\n <mn>3</mn>\n </msubsup>\n </mrow>\n <annotation>$$ {}_{2g}^3 $$</annotation>\n </semantics></math> ground state excludes the Jahn Teller deformation and the orbital ordering. The energy gain due to the rotation of the octahedra (from the cubic space group Pm<span></span><math>\n <semantics>\n <mrow>\n <mover>\n <mn>3</mn>\n <mo>¯</mo>\n </mover>\n <mtext>m</mtext>\n </mrow>\n <annotation>$$ \\overline{3}\\mathrm{m} $$</annotation>\n </semantics></math>, N. 221, to space group <span></span><math>\n <semantics>\n <mrow>\n <mi>P</mi>\n <mfrac>\n <mn>4</mn>\n <mi>m</mi>\n </mfrac>\n <mi>bm</mi>\n </mrow>\n <annotation>$$ P\\frac{4}{m} bm $$</annotation>\n </semantics></math>, N.127, and to <span></span><math>\n <semantics>\n <mrow>\n <mi>I</mi>\n <mfrac>\n <mn>4</mn>\n <mi>m</mi>\n </mfrac>\n <mi>cm</mi>\n </mrow>\n <annotation>$$ I\\frac{4}{m} cm $$</annotation>\n </semantics></math>, N. 140) in the oxide is about 70 times larger than in the fluoride (5.4 vs. 0.08 mE<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mi>h</mi>\n </msub>\n </mrow>\n <annotation>$$ {}_h $$</annotation>\n </semantics></math>), due to the larger electrostatic forces (a factor four, as the formal charge doubles in going from F<sup>−</sup> to O<sup>2−</sup>) and the consequently reduced B-X distances. In KVF<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow></mrow>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation>$$ {}_3 $$</annotation>\n </semantics></math>, the p states of fluorine are separated by 6.4 eV from the d states of vanadium, whose band is quite narrow (1 eV). In the oxide, on the contrary, the oxygen p states overlap to a large amount with the d states of chromium, whose band is more than 6 eV large. The FM and AFM energy differences, the spin density maps and profiles, and the Mulliken analysis data are also provided for documenting the differences between the oxide and the fluoride.</p>\n </div>","PeriodicalId":188,"journal":{"name":"Journal of Computational Chemistry","volume":"46 4","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcc.27523","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The geometrical, electronic and vibrational properties of LaCrO 3 $$ {}_3 $$ have been investigated by using an all electron Gaussian type basis set, the B3LYP functional and the CRYSTAL code, and compared with KVF 3 $$ {}_3 $$ : in the two compounds the transition metal is formally in d 3 $$ {}^3 $$ configuration. The high spin t 2 g 3 $$ {}_{2g}^3 $$ ground state excludes the Jahn Teller deformation and the orbital ordering. The energy gain due to the rotation of the octahedra (from the cubic space group Pm 3 ¯ m $$ \overline{3}\mathrm{m} $$ , N. 221, to space group P 4 m bm $$ P\frac{4}{m} bm $$ , N.127, and to I 4 m cm $$ I\frac{4}{m} cm $$ , N. 140) in the oxide is about 70 times larger than in the fluoride (5.4 vs. 0.08 mE h $$ {}_h $$ ), due to the larger electrostatic forces (a factor four, as the formal charge doubles in going from F to O2−) and the consequently reduced B-X distances. In KVF 3 $$ {}_3 $$ , the p states of fluorine are separated by 6.4 eV from the d states of vanadium, whose band is quite narrow (1 eV). In the oxide, on the contrary, the oxygen p states overlap to a large amount with the d states of chromium, whose band is more than 6 eV large. The FM and AFM energy differences, the spin density maps and profiles, and the Mulliken analysis data are also provided for documenting the differences between the oxide and the fluoride.

Abstract Image

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.60
自引率
3.30%
发文量
247
审稿时长
1.7 months
期刊介绍: This distinguished journal publishes articles concerned with all aspects of computational chemistry: analytical, biological, inorganic, organic, physical, and materials. The Journal of Computational Chemistry presents original research, contemporary developments in theory and methodology, and state-of-the-art applications. Computational areas that are featured in the journal include ab initio and semiempirical quantum mechanics, density functional theory, molecular mechanics, molecular dynamics, statistical mechanics, cheminformatics, biomolecular structure prediction, molecular design, and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信