{"title":"Taming the classically divergent curvature in self-adjoint quantum black holes","authors":"Harpreet Singh, Malay K. Nandy","doi":"10.1007/s10714-025-03373-6","DOIUrl":null,"url":null,"abstract":"<div><p>It is well-known that the Kretschmann curvature diverges strongly at the classical singularity of the black hole interior. In this paper, we are therefore interested in whether such a strong divergence can be tamed quantum mechanically in the vicinity of the black hole singularity. For this purpose, we consider DeWitt-regular quantum black hole solutions of a self-adjoint Wheeler–DeWitt equation originating from a Kantowski-Sachs representation of the black hole interior, coupled with a Klein–Gordon field that accounts for the existence of zero-point quantum vacuum fluctuations. We find that there exist regular quantum black holes with self-adjoint Hamiltonians having well-behaved Kretschmann curvature in the vicinity of the singularity, tamed by stronger restrictions on the eigenvalues than ones required by the DeWitt boundary condition. Consequently, the Kretschmann-regular black holes are found in smaller but still infinite domains in the space of eigenvalues allowed by the DeWitt criterion. Furthermore, we find that other relevant classically diverging quantities pose no threat as their quantum mechanical counterparts are well-behaved in the vicinity of the singularity.</p></div>","PeriodicalId":578,"journal":{"name":"General Relativity and Gravitation","volume":"57 2","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General Relativity and Gravitation","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10714-025-03373-6","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
It is well-known that the Kretschmann curvature diverges strongly at the classical singularity of the black hole interior. In this paper, we are therefore interested in whether such a strong divergence can be tamed quantum mechanically in the vicinity of the black hole singularity. For this purpose, we consider DeWitt-regular quantum black hole solutions of a self-adjoint Wheeler–DeWitt equation originating from a Kantowski-Sachs representation of the black hole interior, coupled with a Klein–Gordon field that accounts for the existence of zero-point quantum vacuum fluctuations. We find that there exist regular quantum black holes with self-adjoint Hamiltonians having well-behaved Kretschmann curvature in the vicinity of the singularity, tamed by stronger restrictions on the eigenvalues than ones required by the DeWitt boundary condition. Consequently, the Kretschmann-regular black holes are found in smaller but still infinite domains in the space of eigenvalues allowed by the DeWitt criterion. Furthermore, we find that other relevant classically diverging quantities pose no threat as their quantum mechanical counterparts are well-behaved in the vicinity of the singularity.
期刊介绍:
General Relativity and Gravitation is a journal devoted to all aspects of modern gravitational science, and published under the auspices of the International Society on General Relativity and Gravitation.
It welcomes in particular original articles on the following topics of current research:
Analytical general relativity, including its interface with geometrical analysis
Numerical relativity
Theoretical and observational cosmology
Relativistic astrophysics
Gravitational waves: data analysis, astrophysical sources and detector science
Extensions of general relativity
Supergravity
Gravitational aspects of string theory and its extensions
Quantum gravity: canonical approaches, in particular loop quantum gravity, and path integral approaches, in particular spin foams, Regge calculus and dynamical triangulations
Quantum field theory in curved spacetime
Non-commutative geometry and gravitation
Experimental gravity, in particular tests of general relativity
The journal publishes articles on all theoretical and experimental aspects of modern general relativity and gravitation, as well as book reviews and historical articles of special interest.